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Abstract

Salinity is increasing in freshwater reaches of rivers around the globe, including in the
Delaware River Basin, located in the mid-Atlantic region of the United States. This study esti-
mates the causal effect of land use changes on in-stream salinity concentrations in the Delaware
River Basin. A 1% increase in urbanized areas increases salinity by 5.9 mg/L, or about 16.7%.
Freezing precipitation, which leads to salt from deicing applications, also increases salinity, par-
ticularly in watersheds with developed land uses. Simulating salinity levels based on land use
and climate projections indicates that, even in a warming climate with reduced deicing, more

development increases in-stream salinity.



1 Introduction

Salt levels are increasing globally in non-tidal reaches of rivers, a phenomenon known as the fresh-
water salinization syndrome (Kaushal et al., 2018, 2021). Increasing salt can have various direct
effects, like ecosystem degradation (Canedo-Argiielles et al., 2013), decreased drinking water quality
(Cruz et al., 2022; Kelly et al., 2018), and infrastructure corrosion (Stets et al., 2018). It can also
lead to secondary effects associated with salt-mobilized chemical cocktails (Kaushal et al., 2019).
Furthermore, in coastal rivers, upstream salinization has the potential to compound with rising sea
levels, shifting the salinity profile of the tidal-fresh zone [Kaushal et al. 2025, in press].

Increasing salinity is due to both natural and anthropogenic causes. Two significant anthro-
pogenic factors are urbanization and, in colder regions, road de-icing applications (Venkatesan et
al., 2011; Mazumder et al., 2021; Utz et al., 2022; Beibei et al., 2025). Several studies evaluate
relationships between salinity, urbanization, and road deicing. Lax et al. (2017) find that, though
agricultural land contributes salts to nearby rivers through fertilizer runoff, agriculture to urban land
use changes lead to an increase in salinity (Lax et al., 2017). Focusing on exurban and suburban
watersheds, Rossi et al. (2022) examine impervious surface coverage and road deicing with a mass
balance transfer model, finding that even small changes in imperviousness can lead to large changes
in in-stream salt concentrations. Beibei et al. (2025) model future salinity for 18 river monitoring
sites throughout the United States, finding population density and imperviousness are the most
important predictors of salinity, yet Corsi et al. (2015) find that in-stream salinity increases faster
than the rate of urban growth, attributing the increase to deicing practices. Mazumder et al. (2021)
distinguish between the salinity levels observed in rivers in summer versus winter, finding that the
effects of increased urbanization are especially notable during summer months.

Additional key factors associated with increasing freshwater salinity are precipitation and tem-
perature. Drought has the potential to concentrate salts in rivers, while heavy rains have the
potential to dilute salts (Van Vliet et al., 2023). Cold weather (and associated deicing) can increase
salt exposure, while warmer weather (with less deicing) may decrease salt exposure. Rossi et al.
(2022) find that warmer winters and reduced deicing in the northeastern US decrease salt exposure.
However, in urbanizing watersheds and a warming climate, it is not yet fully established how future
salinity levels can be expected to change.

While there is some possibility of removing salt with desalination technology, this approach
does not protect against all primary and secondary effects of salinity. There have been attempts to
capture and mitigate high salinity runoff with green stormwater infrastructure, but this approach
has not yet proven to be effective. Instead, using green stormwater infrastructure can simply delay
the release of salt or divert salt to groundwater (Barbier et al., 2018; Snodgrass et al., 2017; Burgis
et al., 2020). Even if salt applications are reduced, salt may be retained in watershed soils for
decades after initial exposure, continuing to salinize downstream waterways (Kelly et al., 2019).

Some scholars suggest salt regulations are needed to protect freshwater ecosystems. Schuler et

al. (2019) discuss the need for ion-specific regulations. Hintz et al. (2022) specifically discuss the



need to weigh the benefits and costs of road salt applications.

In a policy or regulatory environment, causal attribution of the source of salt can help establish
management targets. This study contributes to the growing knowledge on salt in watersheds by using
econometric methods to develop causal relationships between in-stream salinity concentrations,
land use, and climate. While econometric methods are less common in water sciences, some notable
precedents exist in using causal models to develop relationships between land use and water quantity
or quality (Efroymson et al., 2016). For example, econometric methods have been used to establish
causal relationships between impervious coverage and flood (Blum et al., 2020) and between land
use and in-stream habitat conditions (Emmons et al., 2024).

This study investigates three questions. What is the causal relationship between in-stream
chloride concentrations and upstream urbanization? How does weather, particularly precipitation
in freezing conditions, affect in-stream chloride concentrations? Under future urbanization and
climate scenarios, how much is in-stream chloride projected to increase?

We implement a panel data model comparing sub-watersheds within the Delaware River Basin
(DRB), a watershed with a sixty-year history of managing salinity in the mid-Atlantic United States.
Within the DRB, we find that a 1% increase in urbanized land increases salinity by 5.9 mg/L, or
about 16.7%. Precipitation during freezing temperatures (snow, sleet, frozen rain), which is asso-
ciated with de-icing applications, also increases salinity. Models that interact weather conditions
with land use change show that freezing precipitation primarily increases chloride in urbanizing
watersheds. Simulating salinity levels based on land use and climate projections shows mixed re-
sults. More development increases salinity, even though warmer temperatures mitigate this increase.
Overall development patterns dominate warming effects, and overall salinity is predicted to increase
in scenarios that show increased development.

Our primary contribution is to estimate a causal relationship between land use and salinity.
Our panel data model includes watershed fixed effects that control for all static factors in a given
watershed. This is important if the share of developed land is correlated with other factors that affect
salinity, such as point source pollution. The model relies on changes in land use over time, which
better reflects how increases in urbanization will affect water quality. This research complements
work such as Rossi et al. (2022), which studies specific watersheds in the same region, but does not
isolate a causal relationship. We focus on a reduced form model and do not develop a biophysical
mass balance model as in Rossi et al. (2022). Mazumder et al. (2021) perform a similar analysis in
Ontario, but does not generate aggregate parameters across an entire watershed. Our parameters
from the Delaware Basin as a whole allow for out-of-sample predictions to simulate changes in
climate and development patterns. This work highlights that increases in developed land increase
chloride concentrations for an entire river basin spanning four states. Increases in warming does
mitigate the salinity increases from urbanization, but without action, our models indicate that
salinity will still increase in a warmer, more urban environment.

We begin by providing an overview of the study area and data in Section 2. We present the

fixed effects panel data model in Section 3 and the findings in Section 4. In Section 5, we simulate



chloride levels based on land use and climate scenarios. Finally, we discuss limitations and conclude

in Sections 6 and 7.

2 Study area and data

2.1 Delaware River Basin

The Delaware River Basin is the drinking water source for 13 million people and exhibits significant
salinization trends. From 1998 to 2018, specific conductance levels rose across the DRB, partic-
ularly during low flow conditions, indicating persistent subsurface contamination (Rumsey et al.,
2023). The lower basin, characterized by higher impervious surfaces and greater land disturbance,
experiences notable increases in specific conductance during the winter, consistent with deicing
contributing to salinity in the water (Rumsey et al., 2023).

Since the 1960s, the Delaware River Basin Commission has prioritized salinity management to
benefit of downstream water users located closer to the mouth of the river’s estuary. Particularly
vulnerable are the primary drinking water intake for Philadelphia (surface water) and Camden’s
groundwater supplies, which are adjacent to the Delaware River. There is an appointed River Master
that coordinates upstream freshwater dam releases to maintain the location of the "salt front," where
chloride concentration is 250 mg/L, at 67 to 76 miles from the river’s mouth. However, maintaining
this position will become increasingly difficult as sea levels rise, projecting an upriver shift of the
salt front even if downstream flow volumes remain constant (Crosby et al., 2016).

In addition to sea levels, the salinity of the freshwater flowing downstream also influences the
location of the salt line. The DRB’s rising salinity trend could undermine the effectiveness of flow
management strategies. The DRBC attributes observed salinity increases to road de-icing practices
and the expansion of impervious surfaces. They note significantly higher winter chloride concentra-
tions and emphasize the need for further monitoring, source investigation, and the development of
de-icing alternatives (DRBC, 2020).

Figures 1 present the land use distribution in the study region for 2001 and 2019, respectively.
Over the 18 years, significant changes in land utilization are observed, particularly in the expansion
of urban areas. Figure 2 further illustrates these changes, emphasizing the areas where land use
has shifted from natural or agricultural lands to urban developments. These changes are crucial
for understanding how different land uses contribute to salinity levels in the Delaware River Basin.
The figures highlight the complexity of land use dynamics and the need for comprehensive research

to determine their impact on water quality, particularly salinity.



Figure 1: Land Use Distribution Comparison
Land Use Distribution in 2001 Land Use Distribution in 2019

Station Station

Land Cover Distribution
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Land Cover Distribution
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Note: These figures show the land use distribution within the study region for the years 2001 and 2019, illustrating

significant changes in land utilization over the 18-year period.



Figure 2: Land Use Change from 2001 to 2019

Study Region: Delaware River Basin
Land Cover Change: 2001-2019

Land Cover Change
Nat-to-Ag (11.38 Sq. Mi.)
. Ag-to-Dev (35.9 Sq. Mi.)
. Ag-to-Nat (17.57 Sq. Mi.)
Dev-to-Ag (0.01 Sqg. Mi.)
. Nat-to-Dev (23.78 Sq. Mi.)
| Dev-to-Nat (0.01 Sq. Mi)

Station

Note: This figure illustrates the land use changes in the study region between 2001 and 2019, highlighting areas

of urban expansion and other land use transformations.

2.2 Data sources

We construct a panel dataset to analyze the effect of land use change on salinity in the Delaware
River Basin. The dataset spans from 2001 to 2019 and integrates hydrological, land use, and weather
variables. This section describes the data sources used and the methods to combine the data to link
land use and weather to water quality at observed monitoring stations.

The primary source of water quality data was the Water Quality Portal, managed collaboratively
by the United States Geological Survey (USGS) and the United States Environmental Protection
Agency (EPA). This dataset includes measures of chloride measured in milligrams per liter (mg/L),

also referred to as parts per million (ppm). Geographical data, including elevation and watershed



boundaries, were sourced from the National Map’s 10-meter DEM and Hydrosheds’ 90-meter void-
filled digital elevation models.

Land cover data were obtained from the National Land Cover Database (NLCD).! These data
were processed to categorize land cover into natural, agricultural, and developed. Meteorolog-
ical data, including daily precipitation and temperature records, were acquired from NOAA’s

nClimGrid-Daily dataset, providing detailed climatic profiles at the river gauge locations.?

2.3 Data preparation

The preparation of watershed polygons involved loading Delaware Basin Watershed geospatial data
and transforming the data into a standard coordinate reference. Raster files from the National Land
Cover Database (NLCD) were processed by cropping and masking them according to the watershed
polygons. A reclassification scheme consolidated land cover types into broader categories, such as
"Agriculture" for all planted and cultivated classes.

Frequency values of NLCD class pixels within each watershed were calculated and converted
into square miles for a more intuitive measure of land cover extent. The proportions of each land
cover class within the watersheds were calculated by determining the percentage of each land cover
type relative to the total watershed area.

The processed data, including land cover proportions and changes, were then merged into a
panel dataset. This dataset was structured to align temporal and spatial dimensions. The NLCD
data are only available every two or three years.> When we have a water quality monitoring reading
during a year without NLCD data, we assign the most recent NLCD data year. For example, we do
not have NLCD data in 2017 so a water quality reading in 2017 will be assigned land use from the
2016 NLCD data. The final datasets links each water quality record with a unique spatial watershed
and the land use in that watershed during that year.

Next, we merge in weather data for the watershed linked to the time of the water quality sample.
We consider a range of weather variables and timeframes that could impact water quality. Our
primary weather variables focus on the 30 days preceding the water quality sample. We construct
the average minimum temperature, the maximum amount of precipitation, and the number of
days below freezing that had precipitation. These variables can impact salinity based on flushing
pollutants toward water bodies and the application of de-icing materials that contain salt. We
consider different times from the water quality sample, including the past 7 days and the past 365
days.

Additional processing included cleaning and pre-processing raw data from the Water Quality
Portal, focusing on key water quality measures, and utilizing Digital Elevation Models (DEM) from

the USGS to accurately delineate watershed boundaries. River gauges with data spanning at least

Data retrieved from the Multi-Resolution Land Characteristics Consortium, https://www.mrlc.gov/data, ac-
cessed August 2023

2Data retrieved from the NOAA National Centers for Environmental Information.
https://www.ncei.noaa.gov,/pub/data/daily-grids/, accessed October 2023

3The years where we observe NLCD data are 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019.
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three years were selected, reducing the number from 470 to 366 after quality assessments. The
spatial analysis determined that the flow direction and land cover data were spatially joined with
the delineated watersheds, categorizing land into natural, agricultural, and developed categories.

Two specific issues were addressed during the data preparation process: neighboring and clus-
tered stations. Neighboring stations were identified when monitoring stations were located close to
each other, leading to slightly different watershed areas due to the flow-accumulation pixel to which
they were snapped during the watershed creation. This discrepancy often resulted in one watershed
being inaccurately small. To address this, a 20-meter buffer was created around each station point
to identify stations within proximity (up to 40 meters). Overlapping areas were differentiated from
non-overlapping areas by calculating their geometry. Stations within the defined proximity were
consolidated by selecting one representative station, typically the closest to the flowline or most
downstream. This process was iterated with a 50-meter buffer to ensure stations within 100 me-
ters were accurately consolidated, thus reducing redundancy and ensuring the watershed areas were
correctly represented. Figure A.1 an example of a neighboring station issue.

The clustered stations issue occurred when there were dense clusters of water quality monitoring
stations within the study area, creating tiny, hydrologically nonsensical watersheds. This issue was
addressed by creating buffers around clustered stations to identify and merge closely located stations.
The most representative station was selected based on its proximity to the flowline and hydrological
relevance. This selection was performed manually to ensure accuracy. Additionally, corrections were
made to the watershed delineation to ensure it made hydrological sense by using digital elevation
models (DEMs) and verifying the stations’ snapping to hydrologic features. These methods ensured
that the resulting datasets were hydrologically accurate and representative of the true watershed
areas, facilitating reliable water quality and environmental analysis. Figure A.2 shows an example

neighboring station issue.

2.4 Summary statistics

Table 1 shows the summary statistics for the final panel dataset from 2001 to 2019 for 266 watersheds
within the Delaware River Basin. Each watershed, on average, encompasses an area of 457 square
miles, exhibiting substantial variation. This variance highlights the diverse sizes and scales of the
watersheds analyzed.

The three rows representing the land cover highlight the spatial and temporal variation in
the watersheds draining to the sample locations. Most of the land is natural (73%), followed by
developed (13%) and agriculture (13%). Some watersheds are fulling natural or developed, as
evidenced by the maximum value equaling one.

The final four rows describe the sampling data. There are 20,325 recorded measures of chloride
in the sample. The average chloride concentration was 12.09 mg/L, compared to a Pennsylvania
threshold of 250 mg/L for drinking water. There is a wide range of weather conditions with an
average minimum temperature of 6 degrees Celsius. The average maximum rainfall in the previous

30 days was 185 millimeters, and on average, there were three days with freezing rain or snow in



the 30 days preceding a water quality reading.

Table 1: Summary Statistics: 2001 - 2019
Mean SD Min Max N

Watershed
Area (Sq. Mi.) 456.53 1272.96 0.00 6783.80 266

NLCD

Developed % 0.13 0.16 0.00 1.00 1,707
Natural % 0.73 0.22 0.00 1.00 1,707
Agriculture % 0.13 0.15 0.00 0.61 1,707

Water quality
Chloride (mg/L)  12.09 25.01 0.02 1620.00 20,325

Weather
Min. Temp 6.16 8.96 -25.77 24.71 20,325
Max. Rain 185.40 372.94 0.00 3325.45 20,325

Freezing Precip. 3.27 8.76 0.00 30.00 20,325

Note: The minimum watershed area is 0.0044 and is rounded to 0.00. The sample size (N) for the NLCD data
represents unique watershed-years, or every year that there was a unique water quality reading in a given year.
The sample sizes for weather and chloride represents the number of individual water quality readings. The weather
variables are the rolling average of the most recent 30 days from the water quality reading. Min Temp is in degrees
Celsius, Max. Rain is in millimeters, and Freeze Precip. is the count of days below freezing that had positive

precipitation.

3 Methods

3.1 Water quality methodology

In our primary empirical approach, we model water quality as a function of land use transformation.

The model is the following:

WQi = f1LU (%) + Wiy + i + monthy + year, + € (1)

where W (Q);; represents the chloride concentrations at location ¢ and time ¢. We also run specifi-
cations where we take the natural log of chloride concentrations, where the coefficients can be inter-
preted as the marginal effect of the independent variable on the approximate percentage change in
chloride concentrations. Our primary variables of interest are the land use in the watershed draining
to the monitoring site (LU (%)i+ = ag, dev). Since all three land use categories sum to one, they are

perfectly collinear with the constant term, so we have to drop one land use from the regression. We



drop the natural land use, so the estimated land use coefficients are interpreted as the impact of an
additional percentage of either developed or agricultural land relative to natural land use.

The model incorporates weather variables (0W;;) for the previous 30 days prior to a reading.
Our weather variables are average minimum temperature, maximum rainfall, and the number of
freezing rain days. This selection is predicated on the typical contaminant flushing cycles observed,
particularly road salt during winter and subsequent dry periods (Haq et al., 2018; Kaushal et al.,
2023; Novotny et al., 2008). Similar models estimating the effect of impervious surfaces on flooding
provide a causal interpretation, which has seen increasing attention in water resources studies linking
land use to river flow (Blum et al., 2020; De Niel and Willems, 2019; Levy et al., 2018) and flood
frequency (Ferreira and Ghimire, 2012).

The model includes month, year, and watershed fixed effects. The month and year fixed ef-
fects capture all seasonal and annual shocks to water quality that are common across all sampling
locations. The watershed fixed effect captures all common unobserved factors that affect water
quality in a watershed that do not change over time. For example, watersheds with more developed
land may tend to have large point sources that affect water quality. This will be subsumed in the
watershed fixed effect. This also makes the interpretation of the coefficients on land use as the
impact of changes in land use conditional on the average land use throughout the sample. This is
a similar approach that Blum et al. (2020) employ to estimate the causal effect of impervious cover
on flooding. To account for serial correlation within watersheds over time, we cluster the standard
errors at the watershed level. We estimate various model specifications to test for the robustness of
our core findings.

We also estimate a model that allows for interactions between land use and weather variables.
This may be important if weather has a different impact on chloride concentrations depending on
the land use. The main motivation of this model is that de-icing application occurs primarily in
developed areas. Therefore, the days of freezing precipitation may primarily affect water quality
in developed areas. This model also feeds into our simulation results, where we observe both
urbanization and warming temperatures. Less de-icing due to warmer weather may mitigate the

effect of increased developed land use.

WQi = B LU(%)it + BoLU (%)t ¥ Wi + 0Wi + i + monthy + year, + €; (2)

Lastly, we run seasonal models to account for potential different effects during the winter season
compared to months where there is minimal or no de-icing application following the approach by
Rumsey et al. (2023).

3.2 Simulation methodology

Estimating the causal effect of land use on salinity enables us to generate out-of-sample predictions,

providing insight into the potential impact of land use change on salinity. The basic methodology
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for our simulation is based on equation 3.

WQu = BLUy + Wy + 64 (3)

The terms with hats (7) denote predicted variables or estimated parameters, indicating that
)/(;t is the prediction or estimate of X;; as opposed to observed data. The results shown above use
observed data and generate estimates of the parameters (3 , @\) We use these estimated parameters
along with projected data of land use (L/U\n) and climate (ﬁ/;) in the year 2100. We also perform
a simulation for the interaction model in Equation 2.

The projected land use data (ITU\Zt) employs the USGS Conterminous US Land Cover Projec-
tions, derived using the FORE-SCE model, which predicts annual land use through 2100. These
projections, originally part of the "LandCarbon" project, use the 1992-2005 period as a historical
baseline and forecast future land use from 2006 to 2100. The projections are based on four major
IPCC Special Report on Emissions Scenarios (SRES): A1B, A2, B1, and B2, and are downscaled to
ecoregions within the conterminous United States.* The projections, characterized by a 250-meter
spatial resolution and 17 land-cover classes similar to NLCD, provide annual land cover maps and a
"forest stand age" layer marking years since the last land-use change or disturbance for forest pixels.
The same systematic reclassification scheme applied to the historical NLCD data was used for the
projected NLCD, consolidating classes such as "Hay /Pasture Land" into an "Agriculture" class to
ensure consistency across the dataset. The descriptions of the climate scenarios are provided in
Section B in the Appendix and Figure A.3 shows the projected land uses for the study region for
all four climate scenarios.

In addition to land use projections, we incorporate projected weather variables for 2100 using
the CMIP6 CESM2 model. Two sets of shared socio-economic pathways (SSP) were conducted: SSP
1-2.6 and SSP 5-8.5.° Temperature and precipitation data were downscaled using bias-correcting
techniques for the Delaware River Basin, ensuring precise integration with our salinity model. The
projected weather data provide mean, maximum, and minimum temperatures and precipitation
in 2100. This comprehensive dataset allows us to capture both land use and climatic impacts on
salinity levels.

We incorporate climate impacts on land use-induced salinity in two key ways. First, the land use
projections inherently account for emission scenarios, reflecting how climate change might directly
influence land use patterns. By focusing on the salinity model in Equation 2, we can predict salinity
changes based on the effect of climate change on land use. This approach allows us to isolate
how different projected values for L/U\it will generate varying water quality predictions. Second,

climate change may alter the relationship between land use and salinity. For instance, warmer

‘Data retrieved from the Conterminous United States Land Cover Projections - 1992 to 2100,
https://catalog.data.gov/dataset /conterminous-united-states-land-cover-projections-1992-t0-2100, accessed March
2024.

®Data retrieved from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6),
https://www.nccs.nasa.gov /services/data-collections/land-based-products/nex-gddp-cmip6, accessed March 2024.
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weather conditions might reduce the need for deicers, thus decreasing the contribution of developed
land to salinity. By adjusting the interaction terms between land use and weather variables in our
extended model, we account for these potential changes in the relationship dynamics, enabling a

comprehensive simulation of future salinity levels under varying climate and land use scenarios.

4 Results and discussion

4.1 Water quality model

Results from our primary model (equation 1) are presented in columns (1) and (2) in Table 2. A
one percentage increase in developed land use increases chloride concentrations by a little less than
6 mg/L, which is not statistically significant. The only weather variable that impacts salinity is the
number of days with precipitation below freezing. There is a positive and statistically insignificant
effect of changes in agricultural land use. More days with ice and/or snow increase chloride concen-
trations, potentially due to more salt from de-icing. The same basic results hold in the column (2)
where the dependent variable is the natural log of chloride concentrations. This model shows an
approximately 16.7% increase in chloride concentrations for a one percentage increase in developed
land use.’

Columns (3) and (4) present the results from the interaction model. In column (3), the base
effects of developed land are similar. The base effect of freezing rain actually switches signs and
is statistically significant. Two statistically significant interactions between land use and weather
are: developed land use interacting with days of minimum temperature, and developed land use
interacting with days of freezing rain. The interpretation is that freezing rain only increases salinity
in watersheds with developed land. This provides additional evidence that one mechanism for
urbanization’s effect on salinity is through road de-icing. Similar results hold for the model using

logged chloride concentrations.

5The actual percentage change for a logged dependent variable is €®, which in our case results in a 18.15% marginal
effect.
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Table 2:

Regression of salinity on land use

(1) (2) 3) (4)
mg/L log mg/L log
Dev (%) 5.90 0.167** 5.96* 0.166**
(3.41) (0.064) (3.16) (0.063)
Ag (%) 1.34 0.087 1.53 0.087
(1.56) (0.067) (1.50) (0.067)
Min. Temp -0.095 -0.003 0.058* -0.003
(0.053) (0.002) (0.030) (0.002)
Max. Rain 0.0001 -0.0001*** -0.0003 -0.0001***
(0.0005) (2.38 x 1079) (0.0005) (3.32 x 1079)
# Days w/ Freezing Precip. 0.086*** 0.002*** -0.100*** 0.0004
(0.027) (0.0006) (0.023) (0.0006)
Dev (%) x Min. Temp -0.020* 1x107°
(0.010) (0.0001)
Dev (%) x Max. Rain 3.92x 1075  —4.69 x 107°
(0.0003) (3.92 x 1079)
Dev (%) x # Days w/ Freezing Precip. 0.046™** 0.0003***
(0.014) (4.25 x 1079)
Ag (%) x Min. Temp 0.0005 7.84 x 107°**
(0.001) (3.49 x 1079)
Ag (%) x Max. Rain -3.03x107°  6.62 x 1077
(7.5 x 107%)  (1.74 x 1079)
Ag (%) x # Days w/ Freezing Precip. -0.003 4.51 x 107°
(0.007) (3.42 x 1079)
Mean Chloride 12.1 12.1 12.1 12.1
Fized-effects
Month (12) Yes Yes Yes Yes
Year (19) Yes Yes Yes Yes
Watershed (266) Yes Yes Yes Yes
Observations 20,325 20,325 20,325 20,325
Adjusted R? 0.597 0.923 0.636 0.923
Within Adjusted R? 0.009 0.012 0.104 0.015
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Table 3 shows the results for our seasonal models. We differentiate summer and winter based
on whether a month has any days below freezing with precipitation. In our data, October through
April all have some days with freezing precipitation, which we define as “Winter”. May through
September is defined as “Summer”. The summer model is presented in column (1), which states that
increases in both developed and agricultural land increase chloride concentrations in the summer
months relative to natural land. Developed land use has roughly three times the magnitude of
agricultural land and is statistically significant at the 1% level, whereas agricultural land is not
statistically significant. In the winter months, presented in column (2), developed land has a much
larger impact on salinity — the effect is approximately four times greater than in the summer months
— however, the effect is not statistically significant. Agriculture has a larger effect in the winter,
but it is not significant. The presence of a significant effect of developed land use on salinity in the
summer months, when no de-icing occurs, suggests that even though de-icing may be a contributing

factor to salinity increases due to urbanization, it is not the only factor.

Table 3: Regression of salinity on land use: sea-
sonal models

(1) (2)

Summer Winter

Dev (%) 3.34%** 13.7
(0.402)  (10.1)
Ag (%) 0.841 3.84
(0.423) (3.79)
Min. Temp 0.009 -0.151
(0.012) (0.082)
Max. Rain -0.0008***  0.001
(0.0001)  (0.0007)
# Days w/ Freezing Precip. 0.091**
(0.030)
Mean Chloride 12.8 11.2
Fized-effects
Month Yes Yes
Year (19) Yes Yes
Watershed Yes Yes
# Month 5 7
# Watershed 265 216
Observations 11,243 9,082
Adjusted R? 0.878 0.539
Within Adjusted R? 0.017 0.018
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4.2 Robustness

In this section we estimate additional models to test for the sensitivity of our results to modeling
specifications. The first test is the impact of NLCD data availability. Our primary models use all
chloride concentrations samples between 2001-2019 in our sample area. However, we do not observe
land use in the same year as many of these water quality measures. This introduces measurement
error into our primary independent variable. If this is classical measurement error, our coefficient
estimates should be bias towards zero. If this is not classical measurement error, then the coefficient
estimates in Tables 2 and 3 may be biased upwards or downwards. Table A.1 replicated Table 2
while restricting the sample to years where we observe NLCD land use data.

The results are qualitatively similar yet significant. Developed land use has a positive and
significant impact on chloride concentrations. The effects are larger in all the models, consistent
with classical measurement error biasing the primary results towards zero. Even though the sample
is reduced by more than 50% the results are still statistically significant. In fact, in the restricted
model, agricultural land use also has a positive and statistically significant effect on salinity in all
the models at the 10% level. The effect is roughly one-third the magnitude on developed land use in
using actual chloride concentrations and 25% smaller in logs. The interaction models show similar
results with significant impacts of developed land and freezing precipitation primarily affecting
salinity in developed areas.

We also test the impact of our preferred weather specification of using the weather from the
most recent 30 days prior to the water quality reading. It’s possible that weather closer to the time
of the water quality measurement date is more influential on salinity measures, or that longer-term
weather trends cause chloride accumulations in water bodies. In addition to measuring weather
variables 30 days from the water quality measure we also create variables for weather one week
(7 days) and one year (365) prior to the measurement date. Tables A.2 and A.3 replicate Table
2 but replace the temporal measurement of the weather variables. The results on land use are
mostly unchanged, and although the magnitudes of the weather coefficients change, the sign and

significance levels are similar.

5 Simulation results

The summary statistics for the simulated change in salinity for the SSP 1-2.6 scenario and the A1B
NLCD scenario are shown in Table 4. On average, salinity goes up by about 16.74 mg/L in the
base model and 15.40 in the interaction model. The lower increase in the interaction model may
be due to the fact that developed areas will face higher temperatures and fewer days with freezing
precipitation.

We show the results for the simulated change in salinity for all scenarios (four NLCD projections
and two climate projections) in Figure 3. The left panel shows the more conservative SSP 1-2.6
and the right panel shows the more extreme SSP 5-8.5 climate scenario. The x-axis shows the

different NLCD scenarios used to project land use. The bars represent the average predicted change
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Table 4: Simulation Chloride in 2100: SSP 1-2.6: A1B
Mean SD Min Max N

Current Chloride 28.08 37.76 0.39 389.25 266
Predicted Chloride (Base) 43.46 91.42 0.00 447.21 265
Predicted Chloride (Int.) 42.12  87.58 0.00 438.03 265

Pred. Chloride Change (Base) 16.74 75.58 -59.98 394.76 265
Pred. Chloride Change (Int.)  15.40 72.32 -56.13 385.58 265

in salinity concentrations along with standard errors of the mean. In the A1B and A2 NLCD
scenarios, salinity increases on average and it decreases in the B1 and B2 scenarios. The A1B and
A2 scenarios are described in the Appendix in more detail and project more robust economic and
population growth leading to an increase in developed land use. The B1 and B2 scenarios actually
project less developed land than is observed in the sample, and are therefore considered less likely.
Within our sample frame, we see very little land area switching out of developed use. There are not
large differences across the socio-economic pathways used to project the weather data (SSP 1-2.26
vs. SSP 6-8.5). The interaction model consistently simulates lower levels of chloride concentrations

compared to the base model.

Figure 3: Simulated change in chloride for all scenarios and models
Climate Scenario for Weather Variables

SSP 1-2.6 SSP 5-8.5

20
10
Model
B Base
B Interaction
-10
A2 B1 B2

-20
Next, we plot the spatial distribution of the changes in salinity to describe where increases and

Predicted Change in Salinty (mg/L)
o

A1B A2 B1 B2 A1B
NLCD Climate Scenario

Note:
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decreases are likely to occur. To do this, we spatially merge monitoring stations to HUC12 water-
sheds in the Delaware Basin. Most of the increase in salinity is in the lower portion of the watershed

where urban sprawl from the Philadelphia metro area is projected to increase urbanization.

Figure 4: Projected Water Quality in 2100:- SSP 1-2.6, A1B
Base Model Interaction model

Avg. Water
Quality Change
290
240
190

Avg. Water
Quality Change
290
240
190

& ‘“;

.“%

+  Station +  Station

Note: The figures show the predicted changes in average water quality in the USGS HUC 12 watersheds within the
Delaware River Basin for the Climate Pathway SSP 1-2.6 using the A1B NLCD land use projections in 2100.

6 Limitations

The study has several significant limitations. Accurate identification of main stem and tributary
stations within the Delaware River presents substantial challenges, particularly in resolving over-
lapping area removal issues. Land use data are not available every year, although the findings are
robust to restricting the sample to years with NLCD data. Although the fixed effects model controls
for all static features of the drainage area for each monitoring location, there is no natural experi-
ment that randomly shifts urbanization in some watersheds but not others. Additionally, while we
argue that road salt applications likely play a role, we lack specific data on applications to more
precisely identify this mechanism. Lastly, the land use simulations were conducted in 2005, and
are likely outdated given that development patterns have already outpaced the low-development

scenarios.

7 Conclusion

Increasing salinity levels is a growing concern in water bodies around the world. The Delaware
River Basin is likely to experience increased urbanization combined with the stress of sea level

rise pushing the salt front upstream (Lassiter, 2021). This has profound impacts for ecology and
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drinking water sourced from salinizing water bodies. This paper shows that increased urban land
use increases salinity at the watershed scale. The number of days with freezing rain also increases
salinity. The effect is more pronounced in urbanizing regions, which corroborates other studies
showing how road salt application contributes to salinity. In a warmer urbanized world, these two
factors have opposite impacts on salinity, but our simulations show that the land use change is the
dominant factor. Future studies showing how low-impact development and changes in addressing

winter weather can mitigate predicted increases in salinity.
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Appendix

Figure A.1: Example of Neighboring Stations

{

---. USGS-01426500 E9%
( ° ‘ e Eddy

\

USGS—01426500©

(o}
~---'DRBC-3398 ICP

DRBC:-3398 ICP

Note: Stations DRBC-3398 ICP & USGS-01426500 are both located on the main

stem of the west branch Delaware River, but they have slightly different watershed
areas.
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Figure A.2: Example of Clustering Stations

Note: Clustered stations near west of the branch Neversink River.

A Robustness to NLCD data and weather definition
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Table A.1: Regression of salinity on land use restricted to NLCD years

(1) (2) (3) (4)
mg/L log mg/L log
Dev (%) 7.45** 0.205** 6.24** 0.200**
(3.27) (0.077) (2.61) (0.076)
Ag (%) 2.71* 0.155* 2.50* 0.156*
(1.51) (0.082) (1.30) (0.080)
Min. Temp -0.065 -0.004* 0.016 -0.005**
(0.037) (0.002) (0.038) (0.002)
Max. Rain -0.0004*  -0.0001*** 0.0003 -0.0001**
(0.0002) (3.67 x 1079) (0.0002) (4.44 x 107°)
# Days w/ Freezing Precip. 0.072** 0.002** -0.056** 0.0005
(0.027) (0.001) (0.020) (0.0010)
Dev (%) x Min. Temp -0.005 7.62 x 107°
(0.008) (0.0001)
Dev (%) x Max. Rain -0.0002 —9.19 x 1076*
(0.0001) (5.03 x 107%)
Dev (%) x # Days w/ Freezing Precip. 0.037*** 0.0003***
(0.011) (9.66 x 107°)
Ag (%) x Min. Temp -0.003 0.0001
(0.002) (7.71 x 107°)
Ag (%) x Max. Rain -1.73x107°  1.89 x 107
(4.45 x107°) (2.2 x 1079)
Ag (%) x # Days w/ Freezing Precip. -0.007** 4.21 x 107
(0.003) (5.4 x 107°
Mean Chloride 12.1 12.1 12.1 12.1
Fized-effects
Month (12) Yes Yes Yes Yes
Year (8) Yes Yes Yes Yes
Watershed (264) Yes Yes Yes Yes
Observations 8,507 8,507 8,507 8,507
Adjusted R? 0.713 0.900 0.736 0.900
Within Adjusted R? 0.018 0.013 0.098 0.016

23



Table A.2: Regression of salinity on land use: 7 days

(1) (2) (3) (4)
mg/L log mg/L log
Dev (%) 5.92 0.167** 6.31% 0.170**
(3.42) (0.064) (3.33) (0.063)
Ag (%) 1.35 0.086 1.47 0.088
(1.56) (0.068) (1.48) (0.067)
Min. Temp -0.093 -0.002 0.084** -0.002
(0.052)  (0.002) (0.027) (0.002)
Max. Rain 0.0002  -0.0005*** 0.0005 -0.0005**
(0.002)  (0.0001) (0.002) (0.0001)
# Days w/ Freezing Precip. 0.184 0.009** -0.225 0.003
(0.110)  (0.003) (0.129) (0.003)
Dev (%) x Min. Temp -0.027* —5.93 x 1076
(0.013) (7.93 x 107°)
Dev (%) x Max. Rain -0.001 —2.71 x 107
(0.0009) (1.99 x 107°)
Dev (%) x # Days w/ Freezing Precip. 0.123* 0.001***
(0.062) (0.0004)
Ag (%) x Min. Temp 0.002 7.36 x 107°*
(0.004) (4.06 x 107°)
Ag (%) x Max. Rain 0.0002 2.72 x 1076
(0.0003) (7.93 x 1079)
Ag (%) x # Days w/ Freezing Precip. —2.72x107° 723 x 1075
(0.021) (0.0001)
Mean Chloride 12.1 12.1 12.1 12.1
Fized-effects
Month (12) Yes Yes Yes Yes
Year (19) Yes Yes Yes Yes
Watershed (266) Yes Yes Yes Yes
Observations 20,325 20,325 20,325 20,325
Adjusted R? 0.597 0.923 0.623 0.924
Within Adjusted R? 0.008 0.013 0.073 0.016
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Table A.3: Regression of salinity on land use: 365 days
(1) (2) 3) (4)
mg/L log mg/L log
Dev (%) 5.95 0.171* 6.02* 0.171*
(3.41) (0.063) (3.14) (0.063)
Ag (%) 1.38 0.090 1.34 0.090
(1.57) (0.066) (1.48) (0.067)
Min. Temp -0.114* -0.004 0.023 -0.005*
(0.062) (0.002) (0.033) (0.002)
Max. Rain —278 x107° —1.38 x 1079"* 337 x107° —1.32x 107°**
(5.04 x 107°)  (3.52x 107%)  (3.56 x 107°)  (3.81 x 1079)
# Days w/ Freezing Precip. 0.011** 0.0002** -0.009*** 2.99 x 1075
(0.004) (8.79 x 107°) (0.002) (9.71 x 107?)
Dev (%) x Min. Temp -0.019* 5.91 x 107°
(0.010) (0.0001)
Dev (%) x Max. Rain -3.05x107°  —2.72x 1077
(227 x107°)  (2.23x 1077)
Dev (%) x # Days w/ Freezing Precip. 0.004** 2.53 x 1079%**
(0.002) (7.55 x 1076)
Ag (%) x Min. Temp —9.07 x 107°  9.77 x 107°**
(0.002) (4.13 x 1079)
Ag (%) x Max. Rain 3.63 x 1076 6.5 x 1078
(729 x 1076)  (2.13 x 1077)
Ag (%) x # Days w/ Freezing Precip. -0.0002 9.19 x 107¢
(0.0006) (7.11 x 1079)
Mean Chloride 12.1 12.1 12.1 12.1
Fized-effects
Month (12) Yes Yes Yes Yes
Year (19) Yes Yes Yes Yes
Watershed (266) Yes Yes Yes Yes
Observations 20,325 20,325 20,325 20,325
Adjusted R? 0.597 0.923 0.629 0.923
Within Adjusted R? 0.009 0.011 0.088 0.013
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B Simulation

Climate Scenarios:

e A1B Scenario: Emphasizes economic growth with moderate population growth peaking at 9
billion by 2050. High global cooperation leads to rapid technological innovation and increased
energy efficiency, with a balanced use of fossil fuels and cleaner energy sources. Environmental

management is active, allowing for moderate protections in some regions.

e A2 Scenario: Focuses on economic growth with extremely high population growth, reaching
15 billion by 2100. Lower international cooperation and regional self-reliance result in slow
technological innovation and high energy demands. Environmental concerns are low, with

high stress on natural ecosystems.

e B1 Scenario: Prioritizes environmental conservation with moderate population growth peak-
ing at 9 billion by 2050. High global cooperation drives sustainable development, reducing
resource use and increasing renewable energy sources. The human footprint is lessened despite

similar population growth to A1B.

e B2 Scenario: It also emphasizes environmental conservation but with fragmented socio-
economic conditions. Population growth is slower, reaching 10 billion by 2100. Localized
approaches to energy use and environmental protection result in modest economic growth and

a focus on regional solutions.
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Figure A.3: Land Use Distribution Comparison by Model in 2100
Model AB Model A2

- Station - Station

Land Cover Distribution

Dev (10.1261%)
Ag (22.701%)

Nat (67.1729%)

Land Cover Distribution
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Model B1 Model B2

- Station - Station

Land Cover Distribution

Dev (8.167%)
Ag (12.4526%)

Nat (79.3804%)

Land Cover Distribution

Dev (7.0501%)
Ag (10.3625%)

Nat (82.5874%)

Note: These figures show the land use distribution within the study region in 2100, illustrating significant changes
in land utilization over the projected period. The projections are based on four major IPCC Special Report on
Emissions Scenarios (SRES): A1B, A2, B1, and B2, using a systematic reclassification scheme to ensure consistency

across the dataset.
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