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Abstract

Incentivized experiments are commonly viewed as substitutes for, rather than
complements to stated preference methods. While the former are founded in re-
vealed behavior, the latter are able to characterize preferences in situations that
cannot be directly observed. We leverage the distinct strengths of each approach
to model preferences in a situation where the utility derived from a risky attribute
of a good is determined by one’s tolerance for risk. Our novel approach leverages
risk preferences by combining a fully incentivized risk experiment in the field with
a stated preference survey to model utility for intrinsic risk. A door-to-door sur-
vey of 981 participants in a drought-prone region elicits preferences for alternative
sources of municipal water, conditional on water price and quality. Participants’
estimated coefficients of constant relative risk aversion (CRRA) are incorporated
into preference estimation to test the hypotheses that supply risk (vulnerability to
drought) and new technology risk are important intrinsic attributes for new water
sources. Controlling for water quality and cost, we find that supply risk – and not
technology risk – is an important determinant of participants’ choices.
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1 Introduction

Experimentally elicited preferences are widely utilized to predict behavior in the field (Fehr

and Leibbrandt, 2011; Cavalcanti et al., 2013; Gneezy et al., 2016). A key strength of fully

incentivized experiments is that preference elicitation is founded in revealed behavior; in

contrast, stated preference methods are able to characterize preferences in situations that

cannot be directly observed. Thus, while there are opportunities for combining revealed

and stated methods (Adamowicz et al., 1994; Whitehead et al., 2008), incentivized ex-

periments are more likely to be seen as substitutes rather than complements to stated

preference methods. For example, consumer preferences for food are elicited using either

stated choice methods (Scarpa et al., 2012; Meas et al., 2015) or experiments in the lab-

oratory and in the field (Melton et al., 1996; Lusk and Coble, 2005). In other instances,

incentivized experiments are used to validate the results of stated preference methods

(List and Shogren, 1998). In this article we leverage the distinct strengths of each ap-

proach and use information on respondents’ attitudes from an incentivized lab-in-the-field

experiment to augment the estimates in a stated choice study, thereby gaining additional

insights about the respondents’ preferences for intrinsic attributes that would otherwise

remain hidden.

Our approach relates to Lancaster’s (1966) theory of consumption, which states that

utility is derived not from the good or service itself, but rather from its characteristics

or attributes. Building on this premise, stated choice methods make predictions about

changes in utility over alternatives that result from changes in their attributes. While the

analyst has control over the extrinsic attributes for each alternative presented, specific

alternatives may also have intrinsic attributes. One can think of intrinsic attributes as the

residual attributes that are left unspecified in a stated choice experiment. Consider a travel

mode choice experiment that offers the choice between public transit and automobile travel

with extrinsic attributes for the travel time, reliability, and cost. The unspecified intrinsic

attributes for public transit may be inconvenience, the ability to read while commuting,

and warm glow from making an environmentally friendly choice. In the empirical analysis

of the choice experiment these intrinsic attributes are generally bundled into an alternative
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specific constant (ASC) that communicates the aggregate preferences for public transit

relative to driving, conditional on the extrinsic attributes.

In some settings, however, it may be desirable to assess individuals’ preferences or

beliefs for an attribute without explicitly defining it as an extrinsic attribute. For example,

the risk of an accident can be presented as an attribute in the travel choice example,

but it would not necessarily capture the respondents’ pre-existing beliefs about the risk

of cars relative to transit, which are formed by idiosyncratic information unobservable

to the analyst. Moreover, preferences for varying degrees of travel risk depend on the

respondents’ attitudes to risk that are similarly unobservable. Failing to allow for the

respondents’ perceptions of, and preferences for, intrinsic attributes can be problematic.

An important example of this is when the propensity to participate in a survey depends

on risk attitudes in a systematic way. In this article we show that leveraging information

about risk attitudes to model preferences for unspecified intrinsic risk attributes improves

the model fit and yields significantly different estimates of marginal utilities.

Our application combines a fully incentivized risk experiment with a a stated prefer-

ence approach. The risk experiment, involving incentivized decisions over binary monetary

lotteries (similar to Holt and Laury, 2002) is randomly allocated to a subsample of 981

households that participated in a door-to-door survey, where respondents were asked to

choose among six alternative sources of water to augment their city’s central water sup-

ply. The survey uses a discrete choice experimental design (DCE), where alternative water

sources vary with respect to allowed water use and cost to the household. The survey

is conducted in Melbourne and Sydney, Australia, where residents frequently experience

droughts that result in restrictions to household water use as well as controversial public

investments to boost central water supply.1 Therefore, public knowledge about centralized

sources of water provision is high, making it likely that consumers have well-formulated

beliefs regarding the intrinsic risks of different supply sources.

Ex ante we hypothesize that there are two sources of intrinsic risk affecting the choices

made by participants. These sources of risk are intentionally not mentioned in the infor-

1There is an extensive literature on the acceptance of various forms of water supply in Australia, see
Fielding et al. (2015) and the papers cited for more information.
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mation materials provided to the participants of the DCE to ensure participants are not

biased towards responding to these risks more than they would otherwise. First, some

sources (a new dam, stormwater harvesting and interbasin transfer pipeline) are depen-

dent on weather and therefore may not provide sufficient water security during periods of

drought. We term this risk ‘supply risk’. Additionally, certain sources (stormwater har-

vesting and recycled water) provide water via new and somewhat unproven technologies,

which may be of concern to some consumers. We label this intrinsic attribute ‘technol-

ogy risk’. We argue that Australian households have well-formed perceptions of these

two risks based on the extensive public discourse surrounding water supply augmentation

during the Millennium Drought. For example, Dolnicar et al. (2014) show that only 28%

of respondents believe that the current, reservoir-sourced tap water can save Australia

from drought, whereas they are much more confident about the ability of desalination

(77%) and recycled water (83%) to sustain water supplies during a drought. While 90%

of Australian respondents believe their current water is safe to drink, only 54% think this

is true of recycled water, which is, according to 73% of respondents, also prone to tech-

nological failure. These findings by Dolnicar et al. (2014) motivate our hypotheses that

supply and technology risks may be important determinants of preferences for different

water sources.

The article is organized as follows. The next section positions this study within the

revealed and stated preference literature on risk and risk attitudes. The theoretical frame-

work is outlined in Section 3, followed by a brief description of the experimental design and

summary statistics. Section 5 summarizes the empirical framework, Section 6 describes

the main results and Section 7 concludes.

2 Risk in Preference Elicitation

Agricultural and environmental policies tend to have strong elements of risk and uncer-

tainty regarding outcomes (Pindyck, 2007), and a recent focus of the DCE literature has

been on improving the methodology to deal with outcome-related risk. For example,

Glenk and Colombo (2013) add risk of failure as an extrinsic attribute for policy options
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aimed at increasing soil carbon in Scotland, and hence reducing greenhouse gas emis-

sions. They use this data to estimate the preferences of their participants with regards to

the level of uncertainty of policies and find the non-linear expected utility theory model

performs best. Other DCE studies are concerned with outcome-related risk surrounding

the level of environmental quality of a particular lake (Roberts et al., 2008), policies to

improve fish numbers and size in popular angler spots (Wielgus et al., 2009) and poli-

cies to improve the environmental quality in the Great Barrier Reef (Rolfe and Windle,

2015). These studies demonstrate that the addition of an extrinsic attribute that cap-

tures outcome related risk alters the stated preferences compared with studies that do not

explicitly allow for outcome related risks (Roberts et al., 2008; Wielgus et al., 2009). Our

results complement these findings in that we also find an effect on estimated preferences

when allowing for intrinsic risk attributes in a stated choice setting. Moreover, we find

that this effect varies systematically with the respondent’s risk attitude.

Similarly, there is a growing literature that focuses on risk attitudes within the contexts

of flood insurance (Botzen and Van Den Bergh, 2012; Botzen and van den Bergh, 2012;

Petrolia et al., 2013), investments in energy efficiency (Qiu et al., 2014), wildfire protection

(Bartczak et al., 2015) and reducing health risks (Lusk and Coble, 2005; Anderson and

Mellor, 2008; Cameron and DeShazo, 2013; Andersson et al., 2016). Botzen and Van

Den Bergh (2012) analyze the role of increased flood risk from climate change on the

market for flood insurance. They investigate how consumers respond to low-probability

risks and changes in risk, as well the role of communicating risk probabilities in risk-related

decisions. In a revealed preference setting Petrolia et al. (2013) elicit risk attitudes in order

to investigate the role of risk aversion on flood insurance uptake. In most of these settings

risk has a direct effect on the preferences for the good and is explicitly modeled as an

attribute in a choice experiment (Botzen and Van Den Bergh, 2012; Botzen and van den

Bergh, 2012), or as a driver of private purchase decisions (Petrolia et al., 2013). In our

specific setting where risk is an intrinsic characteristic of the good we also find that risk

attitudes matter to consumer choices.

Where risk is a central feature of the good, such as the probability of a flood for flood
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insurance, it can be modeled explicitly. However, in settings such as the deployment of a

new technology, where risk perceptions about the new technology are complex, it may be

preferable to consider risk as an intrinsic attribute and allow respondents to communicate

risk preferences through their choices. For example, self reported data reveals that risk

averse people are less likely to purchase energy efficient appliances (Qiu et al., 2014) and

take longer to adopt new farming technologies (Liu, 2013). Other examples relate to

“range anxiety” for electric cars, where consumers face an increase in the risk of being

stranded from choosing an electric car over a petrol version (Hidrue et al., 2011). The

analyst cannot credibly decouple these risks as extrinsic attributes, and it is this type of

intrinsic risk that is the focus of this article.

The research that is closest to our own from a methodological perspective is Newell

and Siikamäki (2014) and Newell and Siikamäki (2015). Those studies experimentally

elicit individual discount rates to help assess if respondents in a stated choice experiment

on buying a new hot water system trade off between upfront and operating costs in

a cost efficient manner. In contrast, our focus is on eliciting preferences for intrinsic

attributes by leveraging information on risk preferences. Importantly, our approach can

be generalized to link existing preferences to a wide range of intrinsic attributes, thereby

helping to improve the estimation of stated preference models. For example, conditional

cooperation elicited in public goods games can be linked to the intrinsic attributes of

public transit and car pooling versus driving alone in a travel mode choice experiment.

3 Theoretical Framework

We begin with a random utility model (McFadden, 1973) of householders’ choices over

a set of J alternative municipal water sources. Utility U of individual i from choosing

water source j for choice occasion t is given by

Uijt = Vijt + εijt, (1)

where Vijt is a linear function of the observable source attributes, allowed use (quality
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level) and cost per kL consumed, and εijt is a random component incorporating all other

factors that may affect Uijt. In particular, if Vijt contains ASCs, these dummies incorpo-

rate attributes that are intrinsic to the water source such as supply or technology risks.

Individual i chooses water source j for choice t when:

Uijt ≥ Uikt ∀j, k ∈ J, j 6= k. (2)

A standard empirical application of this model assumes the observable component,

Vijt, to be linear and additively separable in its elements. Thus, in our base model:

V = βjXj + βqXq + βcC, (3)

where βj is a vector of the ASCs for each water source Xj, relative to the source that is

represented by the omitted categorical dummy. The vector of coefficients βq is associated

with the different levels of allowed use, Xq, and βc is the coefficient on cost per kL of

water consumed.

In addition to our base model we propose an alternative model specification that

explicitly allows for heterogeneous risk attitudes toward a subset of water sources that

may be perceived as intrinsically risky. In particular, a subset of sources may be perceived

as risky if their supply depends on exogenous factors such as rainfall or if the technology

that is used to provide water is new and unproven. From the outset, we are agnostic

about which type of risk may be important and test models where a dummy variable Xr

describes different types of risk. As before, it is assumed that, independently of allowed

use and cost, each water source provides some utility that is certain from the respondents’

perspective. This component enters the utility function in the standard linear form, βjXj.

An additional utility component is linked to the perceived riskiness of particular sources.

Because of its intrinsic nature, the risk-related component of utility only enters the utility

function through an interaction with risk-preferences. Therefore, in most studies that do

not estimate risk preferences, this component of utility is not observable. The importance

of risk attitudes for explaining heterogeneous preferences is our central hypothesis of
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interest.

Retaining the additively-separable specification of equation (3) the risk-related utility

component is accommodated as follows,

V = βjXj + βqXq + βcC + βr,hf (Xr,h, γi) , (4)

where the sign of βr,h indicates whether the participants perceive source(s) h ⊂ J as risky.

The magnitude of βr,h represents the weight of this intrinsic risk on utility. Xr,h is the

risk variable that takes on the value 2 if the source(s) is affected by risk relative to all

sources assigned a value of 1. The parameter γi denotes each individual’s constant rela-

tive risk aversion (CRRA) in the non-linear specification f (Xr,h, γi) =

(
X

1−γi
r,h −1
1−γi

)
.2 This

parameter is estimated independently using an incentivized lab-in-the field risk experi-

ment. Thus, the utility that is attributable to Xr,h depends on each individual’s CRRA

parameter. A risk loving individual is characterized by γi < 0, a risk neutral individual

by γi = 0 and a risk averse individual has γi > 0.3

To illustrate the differences between the base model and risk-augmented model we

compare the marginal utility implied by each model from choosing a water source j

relative to source k with the same level of quality and cost. In the base model without

risk preferences, the marginal utility of choosing source j over source k is βj−βk, which is

the utility derived from the ASC for water source j. In the extended model, the marginal

utility from choosing source j over source k takes into account both utility components:

the deterministic change in utility, βj, as well as the change in utility that is due to the

relative riskiness of each source and is described by the non-linear combination of βr,j and

γi. Assuming Xr,j = 2 and Xr,k = 1, the marginal utility of choosing source j over source

2The definition of the risk variable Xr,h ∈ {1, 2} in conjunction with the CRRA functional form
ensures that the risk-related component of utility is zero when Xr,h = 1, while varying continuously in
the degree of risk aversion for Xr = 2.

3This specification assumes that, given observed risk attitudes, intrinsic risk-related utility can be
fully separated out from the ASCs. For example, it assumes the utility from the supply risk of a water
source can be captured separately from the utility of choosing a particular water source by the term
βr,hf (Xr,h, γi), where Xr,h is supply risk.
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k is given by

Uij − Uik =βj + βr,j

(
21−γi − 1

1− γi

)
− βk − βr,k

(
11−γi − 1

1− γi

)
(5a)

=(βj − βk) + βr,j

(
21−γi − 1

1− γi

)
. (5b)

The sign of βr,j contains information about the relative riskiness of the two sources as

perceived by the respondents. Table 1 shows how the sign of βr,j interacts with risk

aversion parameter to impact utility, assuming equality of all non-risk related attributes.

Importantly, Table 1 shows how the sign of βr,j yields information about how respondents

perceive the riskiness of source j relative to source k. This allows us to test for intrinsic

risk preferences for various water supply sources.

Table 1: Interpreting the coefficient on βr,h for source j ∈ h relative to source k /∈ h
Risk Loving Risk Neutral Risk Averse Perception of Source j
γi < 0 γi = 0 γi > 0

βr, h > 0 Uj > Uk Uj = Uk Uj < Uk Relatively Risky
βr, h < 0 Uj < Uk Uj = Uk Uj > Uk Relatively Safe

This assumes that the all other non-risk related attributes are for sources j and k are equal such as the
ASC, cost, and quality. This follows the notation in equation (5) where Xr,j = 2 and Xr,k = 1.

To help clarify how risk is incorporated into our model we graphically illustrate the

marginal utility for switching from source k to source j for different levels of risk aversion

given the value of βr, j.4 Figure 1 illustrates that when βr,j is positive the water source j

is perceived as riskier than source k: a switch from source k to this riskier, but otherwise

equally preferred, source j brings positive utility to risk loving individuals and negative

utility to risk averse individuals.5 In contrast, a negative coefficient (βr,j < 0) in equation

(5) indicates that source j is perceived to be safer than source k, so that the switch

from source k to the safer, but otherwise equal, source j brings negative utility to risk

loving individuals and positive utility to risk averse individuals. The marginal utility as

4Similar to Table 1, Figures 1 and 2 follows the notation in equation (5) where Xr,j = 2 and Xr,k = 1.
5For the two sources to be equally preferred when disregarding risk requires for equation (5) that

βj = −βr,j
(

21−0−1
1−0

)
= −βr,j .
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a function of risk aversion when βr,j < 0 is shown in Figure 2. As seen in both Figures 1

and 2 the risk component of utility is zero for a risk neutral consumer (γi = 0).

Figure 1: Marginal utility of switching from source k to source j where source j is con-
sidered riskier than source k and βrj > 0

Figure 2: Marginal utility of switching from source k to source j where source j is con-
sidered safer than source k and βrj < 0.
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Whether a particular intrinsic attribute that is common to a subset of sources is

considered risky by participants, and thus given a significant weight in determining their

choice of a new water source, is an empirical question that we seek to answer using the

data described in the next section. To address this question we assign a subset h of

sources with the risky intrinsic attribute the dummy variable Xr,h = 2. In line with

the illustration above, we reject the null hypothesis that participants did not consider a

particular type of risk in their choice of water source when βr,h 6= 0.

We test three hypotheses using three different groupings of water supply sources: we

assess the riskiness of each source individually as well as for a subset of sources that

are subject to supply risk and another subset that is subject to technology risk. The

first hypothesis tests whether the utility for any water supply source depends on risk.

Empirically, we must set one source as the reference level. In our setting we test each

water source relative to the omitted categorical variable ‘new dam’, which implies further

development of Australia’s conventional water supply source. Source j is considered less

risky relative to new dam if βr,j < 0 and riskier than new dam if βr,j > 0. The second

hypothesis is that supply risk is an important intrinsic attribute for the three weather-

dependent sources: new dam, stormwater harvesting and interbasin transfer pipeline. To

test if supply risk is an important intrinsic attribute we test the null against a one-sided

alternative hypothesis that βr,supply > 0 when Xr,supply = 2 for weather-dependent sources.

The third hypothesis, following the literature on technology adoption and risk aversion

(Liu, 2013; Qiu et al., 2014), is that new technology risk is an important intrinsic attribute

of certain water sources. Recycled and stormwater harvesting are new technologies that

are not widely used in Australia. All other sources have some well established and sizable

capacity (Productivity Commission, 2011). Thus, we assign Xr,tech = 2 to recycled water

and harvested stormwater and test whether water technology risk matters to households

by defining the null hypothesis βr,tech = 0 against the alternative that βr,tech > 0. Our

second and third hypotheses relate directly to the literature that identifies supply risk

and the deployment of new technologies as the primary risks related to public water
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that concern the Australian public.6 The objective of our study is to test whether these

concerns affect householders’ preferences for new sources of water supply in a fundamental

way, and therefore, whether policy makers should focus their attention on these risks when

discussing new water infrastructure investments in the public domain.

4 Survey Design and Data

4.1 Survey description

The discrete choice experiment (DCE) that elicits preferences for new water supply sources

was part of a door-to-door survey on preferences for urban water management conducted

in Melbourne and Sydney, Australia. In total, a random sample of 981 householders over

the age of 18, who had owner-occupier status in 2013, were interviewed.7

At the door, interviewers introduced themselves and asked the householder to par-

ticipate in a survey about local water management. The interviewer then confirmed the

individual’s eligibility, and proceeded with the survey on an iPad. Before commencing

the survey, the software randomly assigned whether or not the participant would start

by completing an incentivized risk experiment, with earnings ranging from A$0.60 to

A$23.10.

Next, respondents participated in a first DCE on the non-market benefits of local

water management projects, described in more detail by [reference removed to preserve

anonymity ]. The second DCE given to participants elicited water source preferences and is

the focus of this article.8 The survey ended with a set of demographic and water-relevant

questions.

6For example, Dolnicar et al. (2014) show that broadly defined concerns about the safety and se-
curity/sustainability of water comprise 7 of the top 10 attributes of public water supplies. The list of
desirable attributes, along with the percentage of respondents listing that attribute, can be found in
Table 3 in Dolnicar et al. (2014).

7By only interviewing owner-occupiers we ensured that all participants in the survey also receive water
bills, as this is not the case for some tenants.

8While there are possibilities of order effects from the two DCEs we do not believe it will affect
our central hypothesis about intrinsic risk attributes. Some respondents were incentivized for the first
DCE, whereas others were not. When comparing the responses of these treatment groups to the second
DCE, we find no statistically significant differences. This is expected given that everyone faced the same
hypothetical, non-incentivized choice sets for the second DCE. We also do not find any difference in
responses between those who were given the risk task and those who were not.
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The survey was developed after a series of focus group meetings with researchers from

different disciplines in the [research center name removed to preserve anonymity] in which

appropriate attributes and levels were discussed.9 A professional survey company was

employed to conduct the survey, and the interview team was carefully briefed by the

authors with regards to the objective and details of the survey. The survey was then

pre-tested in full length interviews with volunteer council employees, most of whom were

not involved with water management in the council. A trained psychologist assisted the

focus group interviews, conducted debriefing interviews with the participants and provided

recommendations based on her assessment of the survey design (including wording, length,

information content and cognitive demands). The revised survey was successfully tested

in the field with a small sample of households before being rolled out.

The survey was conducted in the council areas of Manningham and Moonee Valley

(within greater Melbourne) and Fairfield and Warringah (greater Sydney). The councils

were selected on the basis that they had similar rainfall patterns, income, age composition

and level of home ownership. The survey was undertaken from March to October, 2013,

ensuring results were not driven by seasonality.

4.1.1 Incentivized risk experiment

Before commencing the DCE a randomly selected subset of 167 respondents participated

in a fully incentivized risk experiment involving choices over monetary lotteries, designed

to allow risk attitudes to be estimated.10 Experiments involving risk tasks are particularly

useful for understanding how people make decisions involving risk (Charness et al., 2013)

and have been utilized in areas such as understanding farmer adoption of new technology

(Liu, 2013) and predicting health-related behaviors and preferences (Lusk and Coble, 2005;

Anderson and Mellor, 2008). Furthermore, by fully incentivizing the risk task we address

concerns of hypothetical bias in the elicitation of risk attitudes (Holt and Laury, 2002; Lee

9The [research center name removed to preserve anonymity ] is an Australian research organization,
which is funded by the federal government.

10Risk elicitation was a component of a randomized field experiment linked to the first DCE in the
survey that is unrelated to the DCE over new water sources. As a result, the risk task was not rolled out
over the entire sample.
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Table 2: Risk preference task questions, difference in expected values and coefficient of
CRRA.
Option A Option B EVA − EVB CRRA if switch to B
10% of $12.00, 90% of $9.60 10% of $23.10, 90% of $0.60 $6.99 γi < −1.71
20% of $12.00, 80% of $9.60 20% of $23.10, 80% of $0.60 $4.98 −1.71 < γi < −0.95
30% of $12.00, 70% of $9.60 30% of $23.10, 70% of $0.60 $2.97 −0.95 < γi < −0.49
40% of $12.00, 60% of $9.60 40% of $23.10, 60% of $0.60 $0.96 −0.49 < γi < −0.15
50% of $12.00, 50% of $9.60 50% of $23.10, 50% of $0.60 −$1.05 −0.15 < γi < 0.15
60% of $12.00, 40% of $9.60 60% of $23.10, 40% of $0.60 −$3.06 0.15 < γi < 0.41
70% of $12.00, 30% of $9.60 70% of $23.10, 30% of $0.60 −$5.07 0.41 < γi < 0.68
80% of $12.00, 20% of $9.60 80% of $23.10, 20% of $0.60 −$7.08 0.68 < γi < 0.97
90% of $12.00, 10% of $9.60 90% of $23.10, 10% of $0.60 −$9.09 0.97 < γi < 1.37
100% of $12.00, 0% of $9.60 100% of $23.10, 0% of $0.60 −$11.10 1.37 < γi

and Hwang, 2016). Full instructions and explanatory examples shown to participants are

given in Appendix A.3. The experiment is based on Holt and Laury (2002) and consists of

ten questions, each of which asks the participant to choose between two binary lotteries.

The full set of questions are displayed in the first two columns of Table 2, which show

the potential earnings and probabilities for each of the two lotteries. The third column of

Table 2 shows the difference in expected value of lottery A and lottery B; the fourth gives

the implied range for the coefficient of CRRA γi if the participant switches from lottery A

to B at that question. The tenth question in Table 2 is a choice between receiving $12.00

with certainty (option A) and $23.10 with certainty (option B) and acts as a control

question.11 Before the task commenced, it was explained that one of the 10 questions

would be randomly selected for payment. A random draw was used to determine which

outcome of the selected option was paid to the participant.

To allow for more flexibility in the estimation of individuals’ risk attitudes and to

address concerns about order effects, we depart from Holt and Laury (2002) by presenting

each question separately and in a random order rather than displaying the questions

in a multiple price list format. This accommodates participants who display multiple

switchpoints between lottery A and lottery B because they are indifferent between a

number of lottery choices and thus their implied range of γi cannot be estimated as

precisely as for respondents with single switchpoints (Andersen et al., 2006; Charness

et al., 2013). For example, if a participant records lottery A for his first choice, lottery B

11A participant choosing option A for question 10 could imply that they do not wish to take money
from the researcher or that they did not understand or engage with the task.
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Figure 3: Example representation of the risk task to respondents.

for his second, lottery A for his third and lottery B thereafter, his estimated γi value lies

between −1.71 < γi < −0.15.12 Moreover, showing the lotteries to participants as a list

(as in Holt and Laury, 2002) could lead to ordering effects that impact individuals’ choices

(Harrison et al., 2005; Dave et al., 2010). The randomization of questions employed in

this study may lead to noisier data, but is less likely to be biased. To reduce the cognitive

burden of respondents, all lottery payoffs and probabilities were presented using images

as well as text (Dave et al., 2010), as shown in Figure 3.

4.1.2 Discrete choice experiment over water sources

Preferences for a new water supply source are elicited through a discrete choice experiment

(Carson and Louviere, 2011). The task was introduced to participants as follows (full

instructions are shown in Appendix A.4):

When water shortages become more frequent, investments to increase urban water

supply need to be made. There are a number of options in terms of water source and

technology that a city can invest in. These options differ with respect to the quality of

water provided and therefore their allowed use, as well as the cost of water provision. It

12This statement is made in accordance with the order of questions in Table 2, rather than referring
to the particular random order in which the questions were displayed to the participant.

15



is possible to install a third water pipe to your house, so that your tap water will not be

contaminated with potentially lower quality water from the new source. You would NOT

have to pay for the installation of the third pipe.

You will now be asked to make a series of 10 choices regarding your preferred additional

water source, its allowed uses and the resulting cost of water. Assume that this would be

the cost of your total water consumption per kiloliter in AUD. No other rates or charges

would change.

Before starting the DCE participants received a brief explanation about the different

water sources and attributes. This explanation did not mention risk to ensure that the

respondents’ preferences over intrinsic risk attributes can be estimated without poten-

tial framing confounds. Throughout the choice task the participants could refer to the

summary information sheet, which is reproduced in Figure A.2 of Appendix A.4. Each

participant was then given a sequence of ten separate questions, presented in a graphical

format. Figure 4 provides an example. Each question asked for the participant’s preferred

new water supply source out of six possibilities: desalination, recycled, new dam, ground-

water, stormwater or pipeline (interbasin transfer).13 As shown in Figure 4, the water

supply source attributes vary in terms of allowed use and total cost per kiloliter on their

water bill. Allowed use in the study has three levels – low risk outdoor use (non-potable

outdoor, first two images, by descending order, in Figure 4); adding toilet, laundry and

vegetable gardens (non-potable indoor, third image); and fully potable water (fourth im-

age). Cost per kiloliter ranged from $1.60 to $3.20, in 20c increments. The lower cost

levels were representative of water prices at the time of the survey while the higher levels

are within realistic bounds.

The D-efficiency criterion was applied to construct four blocks of ten choice questions

using the the software package Ngene. Each participant was randomly assigned to one

of the four blocks, and they saw the questions from their given block in a random order.

Overall, the questions were balanced so that each water source was assigned each level of

13While six alternatives may seem high in number for choice experiments, these are the six primary
water sources available in Australia, and excluding any could introduce a bias into the respondents’
choices. For example respondents may lump an omitted source together with one of the alternatives in
the choice set.
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Figure 4: Example of image shown to participants for a water supply source choice.

allowed use and cost approximately the same number of times. New dam and desalination

were only assigned the allowed use category of potable as this reflects the water quality

most commonly supplied by these sources.

The purpose of the survey is to determine community preferences over alternative

future water supply augmentations, conditional on a new water supply source being de-

veloped. Accordingly, this survey represents a forced choice, DCE as there is no “status

quo” option for participants – for example “no new water source” (Hensher et al., 2005;

Louviere et al., 2010; Carson and Louviere, 2011).14 A status quo option such as “no new

water source” brings with it implicit assumptions on the part of the participant about wa-

ter supply reliability compared with building a new source. These implicit assumptions

are not known to the researcher, making the interpretation of the results problematic.

Respondents may associate a type of new water source with a known project, but the

14Forced choice experiments are useful when considering situations such as preferences for the type of
development in a place where a development is inevitable, and how residents value more conservation-
friendly development (eg. Johnston et al., 2003; Duke et al., 2014). This study looks at a similar situation,
asking participants to consider the inevitable situation in which not building a new water source is
untenable.
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potential impact on their local amenities of a particular water supply source is a relevant

consideration for them to be making. Thus, the method chosen represents the best method

to elicit community preferences about options for centralized water supply augmentation

(Hensher et al., 2005; Louviere et al., 2010; Carson and Louviere, 2011).

4.2 Descriptive statistics

The demographics, flood risk perception and flood insurance ownership of the full sample

of 981 participants are recorded in Table 3.15 The second to last column of Table 3 shows

the same data for the subsample of 137 respondents for whom we have observed risk

attitudes.16 The rightmost column of Table 3 shows p-values, using the non-parametric

Mann-Whitney test, comparing the distribution of each variable between the risk sub-

sample and those in the full sample who are not in the risk subsample. The p-values

are all well above 0.1, indicating the risk subsample is not statistically different from the

full sample. Thus, conclusions drawn from the risk sub-sample are relevant for the whole

sample. The overall choices made in the DCE are given in Figure A.1 in Appendix A.1.

4.2.1 Risk preference summary statistics

Table 4 shows the number of times each participant switched from the safe lottery A to

the risky lottery B, using the order of questions in Table 2 as the order of lotteries.17

Switching twice implies the person switched from lottery A to B at some point, then back

to A, then to B again. As shown in Table 4, about half of the participants switched

more than once. This is to be expected given participants saw the choices in a random

order and thus were not biased towards having a single switch point, but rather could

express indifference between some options by switching more than once (Andersen et al.,

2006; Charness et al., 2013). Multiple switching is not uncommon even when using the

original Holt and Laury (2002) multiple price list format, with Anderson and Mellor

(2008) reporting 21% switching more than once from their large sample of the general

15Flood risk perceptions and owning flood insurance are used to impute risk preferences as described
in the Appendix.

16Thirty of the 167 who were given the risk task were excluded, as explained in Section 4.2.1.
17Answering lottery B for the first question of Table 2 is considered one switch.
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Table 3: Summary statistics

Full sample (%) Risk subsample (%) p-value
Gender 0.2943
Female 46.5 42.3
Age 0.1355
Refused 0.2 0
18 to 24 4.0 5.8
25 to 44 24.5 31
45 to 64 41.7 46.7
65+ 29.7 24.8
Education 0.3215
Refused or other 4.0 1.5
Year 10-12 27.3 24.8
Certificate 15.3 16.8
Associate 13.4 14.6
Bachelor 23.8 21.2
Graduate 16.3 21.2
Income 0.3982
Refused 4.1 3.0
Don’t know 2.6 0.7
Low 23.2 22.2
Middle 60.1 61.5
High 10.0 12.6
Flood risk perception 0.9664
Refused 0.1 0
Don’t know 2.8 2.9
1 in 2 years 7.2 4.4
1 in 5 years 8.3 11.7
1 in 10 years 8.4 9.5
1 in 20 years 7.2 5.8
Almost never 66.1 65.7
Flood insurance 0.7389
Refused 0.3 0
Don’t know 22.2 19.0
Yes 38.1 38.7
No 39.4 42.3
Sample size 981 137

Note: The p-values compare the risk sub-sample to the non-risk participants in the full sample, using
the non-parametric Mann-Whitney test.
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Table 4: Number of switches between lotteries A and B
Number of switches from A to B % of participants
1 49.6
2 33.6
3 13.1
4 3.6
Sample size 137

population in the USA.

To utilize the estimated coefficients of CRRA in the modeling approach of this article,

we allocate the midpoint of the estimated range for γi to each participant (see Andersen

et al., 2006; Liu, 2013, and others who use this method). We use a conservative approach

to deal with issues of unboundedness and use a γi parameter value of -1.71 for people who

selected option B in the first question and 1.37 for people who switched from option A to

option B for the last question.18

Of the 167 participants who completed the risk task, we exclude 30 who chose option A

for question 10 since they may not have understood the risk task.19 The 137 participants

for whom risk attitude is observed are a random subsample of the full 981 participants, as

already shown in Table 3. The mean and standard deviation of the observed coefficient of

CRRA are 0.10 and 0.88 respectively. This shows that people are on average risk averse,

as found in similar field experiments (Anderson and Mellor, 2008; Harrison et al., 2007;

Dave et al., 2010).

5 Empirical Specification

This article employs the mixed logit to estimate the utility function given by equations

(3) and (4). An advantage of the mixed logit is that it allows for preference heterogeneity

among participants, by incorporating both fixed and random coefficients.

To simplify notation we group all coefficients into a single vector β, and all variables

18An alternative would be to assume a lower and upper bound based on the most extreme values found
in the literature. Experimentation with this alternative approach did not yield material differences to the
overall results of this study. Also, the majority of Danes in a similar field study were found to exhibit a
CRRA parameter within the range of -1.71 and 1.37 (Harrison et al., 2007).

19The relatively large number of respondents included is likely due to our deviation from the multiple
price list format, which we do in order to reduce single-switching bias.
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for source j at time t into a single Xjt. Uijt can be modeled probabilistically, as it is a

latent variable that determines each individual’s choice of water supply source, j. Thus,

assuming each individual has a unique βi

Pr(Yit = j) = Pr(Uijt > Uikt) ∀j 6= k (6a)

= Pr(βiXjt + εijt > βiXkt + εikt) ∀j 6= k (6b)

= Pr(εikt − εijt < βiXjt − βiXkt) ∀j 6= k. (6c)

As the objective is to compare models that explicitly allow for water source specific

risks with those that do not and for which the error terms would be correlated, we reject

the IID assumption and specify a mixed logit functional form for equation (6c). The

mixed logit model allows for individual heterogeneity in β in the following way:

Pr(Yt = j) =

∫
exp(βXjt)∑
k∈J exp(βXkt)

f(β|θ)dβ. (7)

Here, θ is a vector of distributional parameters, such as the mean and variance, estimated

using numerical simulation of maximum likelihood. Estimating the model requires the

specification of the distribution of each element of β, and whether or not they are indepen-

dently distributed, or correlated. Commonly normal, lognormal or triangular distributions

are used. By allowing random distribution of β, the mixed logit can approximate any

random utility model (Hensher and Greene, 2003; Train, 2009).

6 Results

The base model in the first column of Table 5, is based on equation (3) and is the mixed

logit estimation of the explicit, extrinsic attributes presented in the DCE. It is estimated

on a subsample of 860 people using maximum simulated likelihood with 400 Halton draws;

this number of draws is used to ensure stability of estimates for this dataset and model

21



specification (Hensher and Greene, 2003; Train, 2009).20 The first two coefficients in

descending order are fixed coefficients for allowed use – non-potable outdoor and non-

potable indoor, relative to potable quality. The results confirm findings in other studies

that people dislike non-potable indoor water. Chen et al. (2013) accredit this aversion

to concerns over smell and color of this type of water, given it is used for toilets and

laundering. While other specifications were tested, the goodness of fit measures of AIC

and BIC indicate that the quality coefficients should be fixed.

The next set of variables in column (1) of Table 5 are the means of the random ASC

coefficients for water source, relative to new dam. The coefficients on these variables are

in line with the overall choices (see Figure A.1 in Appendix A.1): they are all negative

as new dam is the most popular option. Desalination, with the largest mean ASC, is

the next most preferred source and the groundwater ASC is the smallest indicating that

it is the least popular source. All water source coefficients are assumed to be normally

distributed.

The final random coefficient is cost. The mean is negative and statistically significant,

as expected. Using a symmetric triangular distribution, we find that sensitivity to cost

is low but within a reasonable range. Sensitivity to cost is often low when using realistic

values for water given these costs are low compared with a total household budget (Olm-

stead, 2010). We use an unbounded triangular distribution that allows more flexibility to

account for this fact.

The next section of the table shows the standard deviation or spread of the random

coefficients. The estimated standard deviation for the new sources of water coefficients are

large and significant. Thus, preferences for new water source are highly heterogeneous.

The spread of the cost coefficient is also significant, indicating a range of cost sensitivities

among respondents.

20The subsample of 860 is used so that it the same subsample as all models in Table 5, which arises as
a result of the imputation process. This is explained in detail in Appendix A.2.
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Table 5: Mixed logit regression results
Base All with risk Supply Risk Technology Risk

(1) (2) (3) (4)

Fixed Coefficients & Means
Fixed Coefficients
Non-potable outdoor 0.0265 0.0259 0.0259 0.0259

(0.0470) (0.0511) (0.0496) (0.0481)
Non-potable indoor −0.1452∗∗∗ −0.1471∗∗∗ −0.1471∗∗∗ −0.1455∗∗∗

(0.0514) (0.0504) (0.0531) (0.0498)
βr,desalination −1.2484∗∗∗

(0.4682)
βr,recycled −0.7858

(0.6179)
βr,groundwater −0.2815

(0.4957)
βr,stormwater −0.3155

(0.5083)
βr,pipeline −0.1122

(0.4029)
βr,supply 0.7115∗

(0.3847)
βr,tech −0.3891

(0.4581)
Random Coefficients
Desalination −0.7724∗∗∗ 0.4811 −0.0546 −0.7746∗∗∗

(0.0879) (0.4661) (0.4014) (0.1021)
Recycled −1.6845∗∗∗ −0.8863 −0.9622∗∗ −1.2903∗∗∗

(0.1109) (0.6392) (0.3995) (0.4823)
Groundwater −2.5589∗∗∗ −2.2713∗∗∗ −1.8375∗∗∗ −2.5616∗∗∗

(0.1207) (0.5202) (0.4047) (0.1331)
Stormwater −0.9977∗∗∗ −0.6797 −0.9998∗∗∗ −0.6053

(0.0788) (0.5250) (0.0845) (0.4747)
Pipeline −2.2565∗∗∗ −2.1380∗∗∗ −2.2534∗∗∗ −2.2554∗∗∗

(0.0980) (0.4220) (0.0992) (0.1074)
Cost −0.1118∗∗∗ −0.1073 −0.1086 −0.1138

(0.0425) (0.0884) (0.0927) (0.0912)

Standard Deviation or Spread
Standard Deviation
Desalination 2.1183∗∗∗ 2.0891∗∗∗ 2.0923∗∗∗ 2.1244∗∗∗

(0.0961) (0.1020) (0.1025) (0.1068)
Recycled 2.2761∗∗∗ 2.2566∗∗∗ 2.2593∗∗∗ 2.2716∗∗∗

(0.1083) (0.1192) (0.1205) (0.1223)
Groundwater 1.6403∗∗∗ 1.6369∗∗∗ 1.6346∗∗∗ 1.6458∗∗∗

(0.1013) (0.1381) (0.1276) (0.1334)
Stormwater 1.6482∗∗∗ 1.6492∗∗∗ 1.6516∗∗∗ 1.6520∗∗∗

(0.0729) (0.0926) (0.0940) (0.0877)
Pipeline 1.3142∗∗∗ 1.3089∗∗∗ 1.3092∗∗∗ 1.3118∗∗∗

(0.0910) (0.1409) (0.1321) (0.1306)
Spread
Cost 0.2639∗∗∗ 0.2522∗∗∗ 0.2549∗∗ 0.2701∗∗

(0.0981) (0.0946) (0.1005) (0.1058)

AIC 23795.0 23790.4 23787.7 23794.2
BIC 23893.8 23924.5 23893.6 23900.1
Observations 8600 8600 8600 8600
Individuals 860 860 860 860

Note: Standard errors clustered at the respondent level are in parentheses. CRRA data is imputed for
723 individuals for models (2) to (4), and thus the standard errors are bootstrapped for these models.
The coefficient for cost follows a triangular distribution. All other random coefficients are normally
distributed. Allowed use variables are relative to potable, water source variables are relative to new dam.
All models are estimated using 400 Halton draws.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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6.1 Incorporating preferences for intrinsically risky attributes

The three hypotheses regarding source specific risk, supply risk and technology risk are

tested subsequently in models (2)-(4). In order to utilize as many individuals in the sam-

ple as possible, we use imputed risk preference data. The imputation involves regressing

demographic variables and indicators of attitudes to risk on the observed CRRA param-

eter. These are jointly significant at the 1 per cent level. The fitted values from this

approach are used to impute the risk attitudes of the 723 people who did not participate

in the risk task and for whom we have observations on all the relevant variables for the

imputation. The mean CRRA parameter value and standard deviation of the full dataset

of 860 respondents with either observed or imputed CRRA parameter values, is 0.08 and

0.58 respectively. This compares favorably to the mean and standard deviation of 0.10

and 0.88 for the observed sample. The results of the imputation and further details are

presented in Appendix A.2; these details include Table A.2, which estimates the models

in 5 using just individuals with observed risk preferences. The results are very similar

overall, but yield slightly lower levels of statistical significance for the coefficients due to

the smaller sample size.

Bootstrapping of standard errors is undertaken in all models (2) to (4) of Table 5 in

order to account for the uncertainty from the imputation stage. We use the Shao and

Sitter (1996) method for bootstrapping, as it is robust to imputation method. It requires

the full imputation procedure to be completed for each bootstrap replication. As a slight

departure from Shao and Sitter (1996), we split the sample into those 137 individuals with

observed risk attitudes and those 723 individuals with unobserved risk attitudes and we

sample each separately, with replacement. This split bootstrap sampling is done to reflect

the original survey design. Because of the random allocation of the risk task among the

survey participants, this split bootstrap sampling process does not impact the validity of

the estimated standard errors.

In model (2) of Table 5 we test the first hypothesis of whether the utility for any water

supply source depends on risk. Thus, we estimate the model from equation (4) with a

vector of risk dummies Xr, such that each source j except new dam has a unique βr,j.
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We conduct a two-sided test on each βr,j; further we note that if βr,j < 0 the source is

considered safe relative to new dam, and risky if βr,j > 0.

We find that only βr,desalination is individually, statistically significant and different

from zero (at the 1% level). Thus, only the intrinsic risk profile of desalination is found

to be significantly different from that of a new dam. Specifically, the negative sign on

βr,desalination indicates that augmenting the water supply with desalinated water is con-

sidered less risky than sourcing additional water from a new dam. This result is intuitive

in light of the frequent water shortages that are imposed in Australia as a result of the

reservoirs’ vulnerability to droughts. Desalination, on the other hand, is seen as the most

robust, drought-resistant supply source. Ranking all sources by the size of their βr,j co-

efficient and ignoring statistical significance for the moment reveals that desalination is

perceived to be the least risky source, followed by recycled, stormwater, groundwater,

pipeline and finally new dam.

Following from equation (5), both the ASCs and the βr,j coefficients must be taken

into account when comparing preferences for sources in model (2), and for any model with

intrinsic risk. In the base model, the only relevant coefficients for comparing preferences,

ceteris paribus, are the ASCs. As an example, the difference in model (2) relative to model

(1) can be observed for the ASC for desalination. This coefficient goes from negative and

statistically significant in in the base model, to positive and insignificant in model (2).

However, taking into account βr,desalination and risk preferences, overall new dam is still

preferred to desalination at the mean in model (2) as in model (1). The difference is that

the results for model (2) can be used to determine how risk aversion affects the preferences

for desalination relative to new dam.

6.1.1 Supply risk preferences

In model (3) of Table 5 we test the second hypothesis that supply risk is an important

intrinsic attribute. We assign the three weather-dependent sources (new dams, stormwater

harvesting and interbasin-transfer pipeline) the risk variable Xr,supply = 2 and formally

test the null that βr,supply = 0 against the alternative that βr,supply > 0. Using a one-sided
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test, we reject the null hypothesis in favor of the alternative hypothesis at the 5% level.

Furthermore, the model fit improves over the base model (1) and over model (2) using

both AIC and BIC criteria. Combining this result with the estimated βr coefficients in

model (2) that ranked new dam, pipeline and stormwater respectively as first, second and

fourth riskiest sources, we conclude that supply risk is an important driver of preferences

for weather-dependent sources. While the results from model (2) suggest that it is the

supply risk of new dam relative to desalination that is a major driver behind the supply

risk coefficient, it is important to model supply risk as a single joint coefficient to test

whether supply risk is an overall driver of preferences. Similar to the interpretation of

individual source risk, the marginal utility from supply risk must be taken into account

in addition to the ASCs when comparing preferences for sources in model (3).

Accounting for supply risk has important consequences for the probability with which

a specific source is preferred over another. For example, model (3) predicts a risk loving

individual is 34% more likely to choose new dam compared with a risk averse individual.

This result is reversed for desalination, where a risk loving individual is 52% less likely

to choose it compared with a risk averse individual. Figure 5 shows the probability of

choosing desalination over new dam as predicted by models (1) and (3). As can be seen,

the probability predicted by the base model in Table 5 does not vary by risk preferences.

In contrast, in model (3) the probability of choosing desalination over new dam more than

doubles from a highly risk loving to a highly risk averse individual.21

6.1.2 New technology risk preferences

The third hypothesis concerning the importance of technology risk in driving preferences

is tested in model (4). Here we assign Xr,tech = 2 to the new and unfamiliar technologies

(recycled and stormwater) and formally test the null hypothesis that βr,tech = 0 against

the alternative that βr,tech > 0. The estimated coefficient of βr,tech for new technology risk

is negative and statistically insignificant, thus indicating that the null hypothesis cannot

21All the values in this paragraph and Figure 5 are calculated ceteris paribus, assuming ASCs at their
means and all sources are of high quality and cost $2.40 per kiloliter. Risk preferences used are at the
extreme CRRA values of -1.71 and 1.37.
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Figure 5: Probability of choosing desalination over new dam by level of risk aversion for
the base model (1) and when accounting for supply risk (model 3).

be rejected. We therefore conclude that new technology risk is not an important driver of

preferences over additional sources of municipal water. Furthermore, using the AIC and

BIC criteria, the model incorporating technology risk does not fit the data as well as the

model with supply risk.

7 Conclusion

Preferences drive choices, and incorporating parameters such as risk attitudes into choice

modeling produces a more comprehensive picture of preferences in a given setting. In this

article we demonstrate how data on risk preferences can disentangle the importance of

specific intrinsic attributes in driving preferences for a particular type of good.

When using DCEs to elicit community preferences for non-market goods, risk often

plays a central role in determining the optimal allocation of resources. Some recent stud-

ies that allow risk to vary explicitly find that risk matters for preferences. However,

what truly drives decisions is risk perceptions, which may or may not be related to the
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defined risk levels in a DCE. Moreover, if existing perceptions about an attribute are

well-established the attribute cannot plausibly be varied across alternatives. Addition-

ally, there is a limit to how many attributes can be included in a DCE experiment before

cognitive limits are reached. We demonstrate that measuring attitudes towards intrinsic

attributes can help identify which, and to what extent, intrinsic attributes drive pref-

erences. This approach can be generalized to account for other experimentally-elicited

preferences such conditional cooperation and trust.

We utilize a fully incentivized risk experiment to accurately elicit risk attitudes of

respondents. We leverage this information on risk attitudes to model the intrinsic risk

perceptions and preferences over new water supply sources in a setting where the public

knowledge about water source risk is high. Indeed, the respondents in our sample fre-

quently experience water restrictions imposed by water shortages and are subjected to

many high profile public debates regarding water supply augmentation options. By ex-

tending a basic random utility model to incorporate observed and imputed risk attitudes,

we are able to test whether water supply risk and new technology risk are important to

participants. We find no evidence that technology risk is an important consideration when

choosing alternative sources of municipal water supply. In contrast our results suggest

that water supply risk is an important driver of preferences and that including this type

of intrinsic risk improves model fit. These findings are important for water managers who

want to utilize green infrastructure for water management but are concerned about the

public perception of alternative supply sources.
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A Appendix

A.1 Overall DCE choices

Figure A.1 shows the overall results from the DCE, with new dam and desalination being

the most preferred options, and groundwater and pipeline the least preferred. It is impor-

tant to remember that desalination and new dam always had potable water, whereas the

other four water sources had a balanced mix of allowed use (quality) levels. Therefore,

if ensuring water is potable is a concern for individuals, then desalination and new dam

never had to be ruled out on the basis of allowed use. The rightmost section of Figure A.1

shows the aggregate choices for allowed use, regardless of cost and water source. Potable

is by far the most popular allowed use at 72.9%, followed by non-potable outdoor (14.9%)

and non-potable indoor (12.3%).

Figure A.1: Overall percentage of choices made by participants.
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A.2 Imputing risk attitudes for the full sample

Table A.1 displays the tobit model that is used to impute risk attitudes for the full

sample. The fitted values from this model are used to impute the risk attitudes for those

without observations for this variable. In order to more accurately impute risk attitudes,
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both demographics and indicators of attitudes to risk are included.22 The attitude to

risk variables are flood risk perception, owning flood insurance, not knowing whether or

not they own flood insurance, and an interaction between owning flood insurance and

flood risk perception. The flood risk perception question is shown in Table 3. In the

tobit model it is treated as a Likert-type scale from 1 to 5, with 1 equating to “Almost

never” and 5 being “1 in 2 years”. As already mentioned, the locations chosen for the

survey had similar rainfall patterns, so differences in responses should not be a reflection

of differences in actual flood risk; rather they should reflect differences in perceived flood

risk. The interaction between owning flood insurance and flood risk perception is positive

and statistically significant, as expected.

The first demographics included in Table A.1 are age, gender and education. Next

are dummies for middle and high household income (relative to low income) as self-

identified by participants. This variable is used for income as subjective data can be

useful as explanatory variables to explain behavior (Bertrand and Mullainathan, 2001).

Furthermore, more people were willing to answer this question about their household

income than giving a more precise indication in dollar values. Finally, the dummy variables

for the council areas of Fairfield, Moonee Valley and Manningham are included, and are

relative to Warringah. The differences in risk attitudes by location likely reflect the

different mix of ethnicities and cultural backgrounds, owing to immigration patterns, of

the different council areas.

As shown in the last rows of Table A.1, the model overall has a good statistical fit.

Even if most of the coefficients are not individually significant, the low p-value of 0.005

for the full model shows that they have a high level of joint significance.

We also include Table A.2 in this appendix to replicate Table 5, but estimated using

just the 137 individuals for whom risk preferences are observed. The overall results

between the two tables are similar, but with overall a lower level of statistical significance

on the coefficients in Table A.2 as expected.

22The model is estimated from 124 of the 137 people with observed risk attitudes as the other 13 do
not have a full set of right-hand side variables due to answering “Don’t know” or refusing to answer to
some of the survey questions.
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Table A.1: Tobit for imputing coefficient of CRRA

Tobit
Constant -0.4976

(0.7710)
Flood risk perception -0.0916

(0.1109)
Own flood insurance -0.0225

(0.2435)
Don’t know flood insurance -0.3901

(0.2498)
Flood insurance*Flood risk percep 0.3412∗∗

(0.1503)
Age -0.0089

(0.0061)
Female 0.0810

(0.1840)
Education (yrs) 0.0591

(0.0452)
Middle income -0.2087

(0.2376)
High income -0.1150

(0.3547)
Fairfield 0.6196∗∗

(0.2870)
Moonee Valley 0.3039

(0.2558)
Manningham 0.6336∗∗

(0.2644)
σ 0.9600∗∗∗

(0.0729)
Pseudo R-squared 0.0798
P-value 0.0047
N 124

Note: Standard errors are in parentheses. Middle and high income are dummies relative to low income.
Dummies for Fairfield, Moonee Valley and Manningham are relative to Warringah.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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Table A.2: Mixed logit regression results - those with observed risk preference data only.
Base All with risk Supply Risk Technology Risk

(1) (2) (3) (4)

Fixed Coefficients & Means
Fixed Coefficients
Non-potable outdoor −0.0587 −0.0587 −0.0583 −0.0587

(0.1080) (0.1081) (0.1080) (0.1080)
Non-potable indoor −0.2602∗∗ −0.2599∗∗ −0.2595∗∗ −0.2601∗∗

(0.1202) (0.1203) (0.1202) (0.1201)
βr,desalination −0.9913∗∗

(0.4417)
βr,recycled −0.1791

(0.4311)
βr,groundwater 0.3353

(0.4380)
βr,stormwater −0.1140

(0.3410)
βr,pipeline −0.1826

(0.3490)
βr,supply 0.2247

(0.2729)
βr,tech −0.1209

(0.2759)
Random Coefficients
Desalination −0.6763∗∗∗ 0.3287 −0.4354 −0.6748∗∗∗

(0.1781) (0.4697) (0.3400) (0.1783)
Recycled −1.3025∗∗∗ −1.1034∗∗ −1.0638∗∗∗ −1.1771∗∗∗

(0.2077) (0.5041) (0.3551) (0.3528)
Groundwater −2.1674∗∗∗ −2.5231∗∗∗ −1.9428∗∗∗ −2.1664∗∗∗

(0.2540) (0.5479) (0.3707) (0.2538)
Stormwater −0.7050∗∗∗ −0.5866 −0.7071∗∗∗ −0.5778∗

(0.1558) (0.3911) (0.1558) (0.3283)
Pipeline −1.6346∗∗∗ −1.4344∗∗∗ −1.6346∗∗∗ −1.6342∗∗∗

(0.1774) (0.4089) (0.1771) (0.1774)
Cost −0.1538 −0.1662 −0.1543 −0.1528

(0.1108) (0.1020) (0.1107) (0.1112)

Standard Deviation or Spread
Standard Deviation
Desalination 1.6336∗∗∗ 1.5527∗∗∗ 1.6085∗∗∗ 1.6400∗∗∗

(0.1987) (0.1783) (0.2009) (0.1991)
Recycled 1.6001∗∗∗ 1.6775∗∗∗ 1.6101∗∗∗ 1.5955∗∗∗

(0.2123) (0.2246) (0.2144) (0.2099)
Groundwater 1.2644∗∗∗ 1.2648∗∗∗ 1.2825∗∗∗ 1.2624∗∗∗

(0.2344) (0.2343) (0.2359) (0.2339)
Stormwater 1.1651∗∗∗ 1.1628∗∗∗ 1.1648∗∗∗ 1.1628∗∗∗

(0.1433) (0.1398) (0.1428) (0.1431)
Pipeline 0.7929∗∗∗ 0.7856∗∗∗ 0.7937∗∗∗ 0.7921∗∗∗

(0.1945) (0.1942) (0.1925) (0.1942)
Spread
Cost 0.2485 0.2828 0.2502 0.2462

(0.2702) (0.2349) (0.2700) (0.2719)

AIC 4128.2 4132.7 4129.5 4130.0
BIC 4201.3 4231.9 4207.8 4208.3
Observations 1370 1370 1370 1370
Individuals 137 137 137 137

Note: Standard errors clustered at the respondent level are in parentheses. The coefficient for cost follows
a triangular distribution. All other random coefficients are normally distributed. Allowed use variables
are relative to potable, water source variables are relative to new dam. All models are estimated using
500 Halton draws.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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A.3 Instructions - incentivized risk task

-------------------------------- [NEW SCREEN] -------------------------------- 
ACTIVITY 1  

Explanation 
Water management in Australia is influenced by weather and many other uncertain 

factors. Therefore, as a first step, we would like to get a better understanding how Australians 
make decisions related to uncertainty. There are standard techniques to make responses 
comparable between individual respondents. We are using one of these techniques here, to 
understand how important uncertainty is to you, by asking you to make a series of 10 choices 
in simple decision problems, in which you will earn some money. How much you receive will 
depend partly on chance and partly on the choices you make. The decision problems are not 
designed to test you. The only right answer is what you really would choose. 

For each decision problem, please state whether you prefer option A or option B. After 
answering all 10 decision problem, one of the 10 decision problems will be randomly selected 
and its chance outcome will be given to you as payment. As any of the decisions can be 
chosen for payment, you should pay attention to the choice you make in every decision 
screen.  
Example1a: Here is an example of one choice that you may see on the screen. 

 
 If Option A was chosen, there is a 40% chance that you will be paid $12.00 and a 60% 

chance that you will be paid $9.60.  
 If Option B was chosen, there is a 40% chance that you will be paid $23.10 and a 60% 

chance that you will be paid $0.60.   
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Example1b: Here is an example of one choice that you may see on the screen. 

 
 If Option A was chosen, there is a 70% chance that you will be paid $12.00 and a 30% 

chance that you will be paid $9.60.  
 If Option B was chosen, there is a 70% chance that you will be paid $23.10 and a 30% 

chance that you will be paid $0.60.  
In short, this activity is trying to explore how you respond to risk. 

How will you be paid? 
As previously mentioned prior to the examples, you will earn some money depending 

on choices you made, and through chance.  
After you have completed the 10 decision problems for this activity you will be shown 

a random number generator where you will be prompted to click “Stop!!” button. The 
generated random number will determine which of the 10 decision problems to focus on. If 
the random generator number was a 7, the “decision problem” to focus on will the 7th shown 
decision problem.  

After a random number has been generated, you will be asked to draw another 
random number through the random number generator. The second random number 
generator will determine how much you will earn.  
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Referring back to the earlier examples, we mentioned the scenario below.  
 If Option A was chosen, there is a 40% chance that you will be paid $12.00 and a 60% chance that 

you will be paid $9.60.  
 If Option B was chosen, there is a 40% chance that you will be paid $23.10 and a 60% chance that 

you will be paid $0.60.  
 If in the above example, you had chosen Option A, and the number drawn from the 
second random number generator was between 1 and 4, then you earn $12.00. If the number 
drawn was between 5 and10, then you earn $9.60.  
 If in the above example, you had chosen Option B, and the number drawn from the 
second random number generator was between 1 and 4, then you earn $23.10. If the number 
drawn was between 5 and10, then you earn $0.60.  

All earnings are in cash and are in addition to the $30 initial endowment that you 
receive as compensation for your time and effort in this and the following parts of this study. 
The interviewer will pay you the final balance of your earnings when all parts of the study are 
completed. 

PLEASE TAKE IN TO CONSIDERATION THAT THERE ARE NO CORRECT OR 
WRONG DECISIONS. WE ARE ONLY TRYING TO EXPLORE DEPENDING ON THE 

DECISION PROBLEMS GIVEN HOW YOU RESPOND TO RISK.  
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A.4 Instructions - discrete choice experiment.

-------------------------------- [NEW SCREEN] -------------------------------- 
ACTIVITY 2  

When water shortages become more frequent, investments to increase urban water supply need 
to be made. There are a number of options in terms of water source and technology that a city 
can invest in. These options differ with respect to the quality of water provided and therefore 
their allowed use, as well as the cost of water provision. It is possible to install a third water pipe 
to your house, so that your tap water will not be contaminated with potentially lower quality 
water from the new source. You would NOT have to pay for the installation of the third pipe. 
 You will now be asked to make a series of 10 choices regarding your preferred additional water 
source, its allowed uses and the resulting cost of water. Assume that this would be the cost of 
your total water consumption per kilolitre in AUD. No other rates or charges would change. 
PLEASE TAKE IN TO CONSIDERATION THAT THERE ARE NO CORRECT OR WRONG 
DECISIONS. THESE DECISION PROBLEMS ARE NOT DESIGNED TO TEST YOU AND 

YOUR RESPONSE WILL NOT RESULT IN YOU PAYING MORE FOR YOUR WATERBILL.  
 [USE INSTRUCTIONS CHOICE SET 2 HERE AND EXPLAIN DIFFERENT ATTRIBUTE LEVELS] 
Example 2: Here is an example of one choice set that you may see on the screen. 

 
You can choose between one of the six additional water sources. If the water from your 
preferred source is not supplied at drinking water quality, assume that a third water line has 
been installed to your home at no additional cost other than the new water price per kl of 
water you consume. 
Do you have any questions? 
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Figure A.2: Information sheet provided for participants of discrete choice experiment.
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