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Abstract

High Occupancy Toll (HOT) lanes that use dynamic pricing to manage congestion and
generate revenue are increasingly popular. In this paper we estimate the behavioral
response of drivers to dynamic pricing in a HOT lane. The challenge in estimation lies
in the simultaneity of price and demand: the structure of dynamic tolling ensures that
prices increase as more drivers enter the HOT lane. Prior research has found that higher
prices in HOT lanes increase usage. We find that after controlling for simultaneity HOT
drivers instead respond to tolls in a manner consistent with economic theory. The
average response to a 10% increase in the toll is a 1.6% reduction in usage. Drivers
primarily value travel reliability over time savings, although there is heterogeneity in
the relative values of time and reliability based on time of day and destination to or
from work. The results highlight the importance of both controlling for simultaneity
when estimating demand for dynamically priced toll roads and treating HOT lanes
with dynamic prices as a differentiated product with bundled attributes.
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1 Introduction

Road transportation comprises a substantial proportion of the United States economy. The

vast majority of infrastructure is owned, maintained, and operated by local, state, or federal

agencies. According to Winston (2010) in 2007 American consumers spent over $1 trillion

dollars on gasoline and vehicles. In metropolitan areas road congestion led consumers to

purchase 2.9 billion additional gallons of fuel and spend 5.5 billion hours sitting in traffic

(Schrank et al., 2012). These costs are likely lower bounds due to unpriced congestion ex-

ternalities for local air pollution (Currie and Walker, 2011; Gibson and Carnovale, 2015),

carbon emissions (Weitzman, 2009), and increased sprawl (Anas and Rhee, 2006).1 Despite

the enormous annual cost of traffic congestion most roads do not have even the simplest form

of congestion pricing. Combating congestion in the short run by increasing capacity is chal-

lenging due to strained transportation budgets such as the perennial projected insolvency

of the Highway Trust Fund (Kirk and Mallett, 2013). Furthermore, according to the funda-

mental law of highway capacity (Downs, 1962, 2004; Duranton and Turner, 2011), increasing

road capacity is met with proportional increases in demand - meaning augmenting supply

is not likely to solve the problem of traffic congestion. Based on these facts, implementing

appropriate congestion pricing has the potential to produce large welfare gains. Recent es-

timates from Couture et al. (Forthcoming) place the deadweight loss of congestion in the

United States at 30 billion dollars a year.

One particular example of congestion pricing that is gaining traction is the High Oc-

cupancy Toll (HOT) lane, where High Occupancy Vehicles (HOV) travel do not pay to

access the road and Single Occupancy Vehicles (SOV) are charged an access toll.2 From

an engineering perspective redistributing cars from congested general-purpose (GP) lanes to

free-flowing HOV lanes can reduce congestion delays and associated externalities (Dahlgren,

2002). The tolls on HOT lanes often vary by time of day or traffic conditions moving trans-

1Tolling may not affect the urban structure as shown in Arnott (1998).
2The definition of an HOV varies by location and roadway, but all HOV require at least two occupants

and some require three or more.
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portation infrastructure closer towards pricing congestion externalities that the economics

field has espoused for several decades (Agnew, 1977).

HOT lanes generate revenue for local and state agencies that is particularly valuable in the

context of aging infrastructure and diminished revenue from gas taxes which has declined

in real terms since 1993. Furthermore, HOT lanes are politically palatable compared to

unpopular uniform tolls or vehicle miles traveled taxes because GP lanes are left untolled,

maintaining a free alternative for low income or cost-sensitive drivers Lindsey (2010). These

characteristics of HOT lanes in theory can lead to broad welfare gains (Safirova et al.,

2004). However, there remain concerns over equity of access: wealthy drivers can avoid

congestion while others must sit in traffic, leading to HOT lanes being disparagingly termed

‘Lexus Lanes’. While HOT lanes are a popular form of managing valuable public roadways,3

there is relatively little empirical economic research on the behavioral response of drivers to

HOT implementation. The presence of free GP lanes as a veritable substitute makes HOT

lanes with dynamic prices an opportunity to uncover how drivers respond to congestion

management.

Our primary contributions are to generate empirical estimates for the price elasticity of

demand and calculate the value of time and reliability on dynamically priced HOT lanes

using micro-level data on SR167, in the Seattle-Tacoma metropolitan area of Washington

State. While most economists are not surprised by a downward sloping demand curve, the

existing empirical literature on dynamically priced HOT lanes estimates a positive price

response (Liu et al., 2011b; Janson and Levinson, 2014). In addition to identifying a more

plausible demand elasticity we show that failure to properly identify the behavioral response

to price produces invalid estimates of the value of time and reliability.

The most common explanation put forth for the positive effect of price on HOT demand

is that price acts as a signal of future congestion (Liu et al., 2011b; Janson and Levinson,

3According to the Bureau of Economic Analysis the value of the stock of highways is equal to $3,264.5
billion. Data were accessed from Table 7.1B. Current-Cost Net Stock of Government Fixed Assets on
1/13/2014 - http://www.bea.gov/iTable/index.cfm
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2014), and therefore higher prices are associated with greater time savings. This explana-

tion confounds expectations about time savings with the pure behavioral response to price.

Ceteris paribus, consumers prefer to purchase the same amount of time savings at a lower

price. Not accounting for expectations of time savings introduces omitted variable bias into

the coefficient on the pure price effect. A more plausible explanation for a positive price

elasticity is that previous work did not adequately control for the simultaneity of price and

congestion in dynamic tolling algorithms. As more drivers enter the managed lane condi-

tions deteriorate (speed decreases) and the tolls increase, leading to a positive correlation

between price and usage. Traffic conditions are persistent and exhibit a high degree of auto-

correlation, leading to biased estimates of price, which is a function of the lagged dependent

variable.

Without formally addressing the problems of simultaneity and omitted variable bias in

the setting of dynamic tolling algorithms it is premature to conclude that HOT lanes cause

a positive response to prices. Our identification relies on an instrumental variable and first-

differences approach that overcomes the simultaneity of price and quantity that generates

the positive demand response for Liu et al. (2011b). We also control for travel reliability and

expectations of time savings using micro-level data, unlike Janson and Levinson (2014) who

examine aggregate differences in usage after experimental changes in the toll rates.

Contrary to the previous literature that finds a positive demand response we estimate

price elasticities ranging between −0.16 and −0.21, with a preferred estimate of −0.16. This

is the first estimate of a negative price elasticity (to our knowledge) for dynamically priced

HOT lanes, which are a critical part of many cities’ future transportation management plans.

Our second contribution is to jointly estimate value of time (VOT) and value of reliability

(VOR) for a dynamically priced HOT lane. Prior studies (Brownstone et al., 2003; Liu et

al., 2011b; Burris et al., 2012; Janson and Levinson, 2014) of dynamically priced HOT lanes

construct a simple estimate of the VOT by dividing the toll by the realized time savings.

This method produces unrealistically high estimates of VOT that can exceed $100/hr (Burris
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et al., 2012; Janson and Levinson, 2014), whereas the U.S. Department of Transportation

uses 50% of median household hourly income for the VOT for personal travel, which equates

to roughly $14 for Seattle Metro.4 Simply dividing the toll by time savings is problematic

because the toll contains a bundle of attributes including improved reliability.5 Though some

of the authors (Burris et al., 2012; Janson and Levinson, 2014) mention these limitations

there are no large scale revealed preference studies that jointly estimate VOT and VOR for

HOT lanes.6

The joint estimation of VOT and VOR is axiomatically linked to the challenge of properly

identifying the demand response for HOT lanes with dynamic pricing. Without identifying

the demand response, which represents the (negative) marginal utility of income, it is im-

possible to estimate the marginal rates of substitution between time savings and money and

reliability and money. This leads to problems in the simple methods for estimating VOT on

HOT lanes that assigns all of the benefits associated with the HOT lane to time savings. De-

varasetty et al. (2012) show in a stated preference study that VOR can be larger than VOT

on HOT lanes, indicating that most of the simple revealed preference VOT estimates are too

large. Our results are even more stark; drivers vastly value reliability over time savings on

the HOT lane. We estimate that VOT is only $7/hour for the preferred specification while

VOR is over $22/hour. In aggregate 68% of the benefits to HOT users are from increased

reliability, though time savings is relatively more important for some subsets of the roadway.

In related work Bento et al. (2014) find that drivers primarily value urgency, or on-time

arrival, when using HOT lanes, which is consistent with our findings of reliability being the

more important factor. Our estimation also allows us to calculate the back of the envelope

benefits to toll users associated with decreased travel time and increased travel reliability. In

the base specification the benefits are approximately $3.4 million; the average driver paying

4Sources are from (U.S. Department of Transportation, 2014; Bureau of Labor Statistics, 2014).
5There are other attributes other than VOT contained in the purchase of HOT access such as the mental

stress from being in traffic, particularly when watching cars pass by in the free-flowing HOT lane.
6Carrion and Levinson (2013) estimates value of reliability for three different lanes using GPS data, but

the sample only contains 18 observations.
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the toll receives benefits that are roughly twice the cost of the toll.

The remainder of the paper is organized as follows. The next section discusses how this

research fits into the existing literature. Section 3 describes the project setting. Section 4

describes the econometric methodology and Section 5 reports the data used in the analysis.

The results are presented in Section 6, and Section 7 offers concluding remarks and discussion.

Details on the econometric specification tests, as well as additional tables and figures are

available in the Appendix.

2 Literature Review

There is a long literature on congestion pricing, and in particular dynamically priced toll

roads that explicitly target the congestion externality Vickrey (1963); Agnew (1977); Arnott

(1998); Verhoef and Rouwendal (2004); Lindsey (2010). While the literature shows that the

optimal congestion charge usually requires all lanes to be tolled this is politically unpopular.

An increasingly common compromise is implementing an HOT lane where SOVs can pay to

access a HOV lane. Theory suggests wide benefits from HOT lanes in the presence of driver

heterogeneity (Dahlgren, 2002), in practice welfare impacts depend on the distribution of

VOT and VOR (Small and Yan, 2001; Small et al., 2005), trends in commuting demand,

tolling structure (Chung and Recker, 2011) and distortions in connected markets (Parry and

Bento, 2002). Konishi and Mun (2010) show that converting from an HOV to an HOT lane

has ambiguous welfare effects, in part due to discouraging carpooling. Many of the models

used in these studies include price elasticity as a parameter without providing support for

its magnitude and direction.

While we focus on estimating driver demand for a HOT lane in a specific location,

the overall context is critical in an attempt to generalize the welfare results. Li (2001)

attempts to explain the determining characteristics of HOT use on SR91 in California by

analyzing survey data. His findings indicate that income, occupancy, trip purpose and age
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are important factors. From a theoretical perspective Parry (2002) conducts an analysis

of congestion tax alternatives using simple models with three assumptions: (1) equate the

marginal social cost of trips both between peak and off-peak travel (2) equate the marginal

social cost across travel modes at a given point in time, and (3) sort high and low time-cost

drivers by lane. He finds that, given driver time cost heterogeneity, a two lane road with

tolls to separate high and low cost users achieves the maximum efficiency, while a uniform

toll across both lanes achieves 90% of the optimum by ‘spreading out the commute of lower

time cost commuters to before and after the toll’. He notes that single-lane tolls are more

politically feasible given the ‘hostility’ from motorists to congestion taxes. Parry and Bento

(2002) partially extend this analysis by incorporating distortions into the welfare calculations

of a congestion tax. They find that the distortions can cause ‘substantial’ changes to welfare

that must be considered as part of a policy change.

According to these findings HOT lanes probably do not achieve the social optimum since

there is still a lane with unpriced congestion externalities. However, dynamic pricing of a

HOT lane shifts policy towards internalizing congestion externalities by raising private costs

as congestion in the tolled lane increases, as well as allowing drivers with different levels of

VOT and VOR to sort appropriately. This is consistent with Dahlgren (2002) who models

the addition of different lane types to an existing transportation environment: ‘mixed’ lanes

perform better than HOV lanes when ‘initial maximum delay is very high but the proportion

of HOVs is not sufficient to fully utilize an HOV lane’. Thus, HOT lanes are an attractive

choice in locations where HOV lanes have excess capacity.

From the perspective of individual drivers, two of the primary benefits for paying to

access a toll lane are travel time savings and improved reliability. Therefore, related to

the welfare implications of HOT lanes is the estimation of VOT and VOR. Li et al. (2010)

and Carrion and Levinson (2012) survey the literature and describe three main models for

modeling travel time reliability: (1) the mean-variance model, (2) the scheduling model, and

(3) the mean lateness model. We use a variety of the mean-variance model based on Small et
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al. (2005) that uses expected travel time savings and the difference between the median and

80th percentile of travel times at different starting times as a metric for reliability. Small

et al. (2005) estimates a VOT of $21 and a VOR of $27 in a HOT lane implementing time-

of-day pricing using revealed preference data, with lower estimates using stated preference

data. Janson and Levinson (2014) estimate that VOT for a dynamically priced HOT lane

in Minnesota ranges from $60 - $124, although the authors acknowledges that the estimates

are higher than typical estimates of VOT for a variety of reasons including not accounting

for VOR. Burris et al. (2012) also estimates relatively high VOT of $49 for a dynamically

priced HOT lane; similar to Janson and Levinson (2014) this estimate does not account for

VOR.

A related concept is the sensitivity of drivers to toll rates. Matas and Raymond (2003)

shows in a review of the literature that travel demand with respect to tolls is relatively

inelastic, with elasticity estimates ranging from -.03 to -.5. In their setting in Spain, Matas

and Raymond (2003) finds elasticities ranging from -.21 to -.83. Finkelstein (2009) finds

travel demand is quite inelastic with respect to tolls, with an elasticity of -.05; drivers are

even less responsive at facilities that use electronic toll collection systems. In the HOT

context, Liu et al. (2011b) recovered coefficient values on price in a logit framework ranging

from 0.214 to 0.600. More recent research by Janson and Levinson (2014) also found a

positive effect of price on HOT usage with elasticities ranging from 0.03 to 0.85. However,

as described above, there are some issues with estimation strategies of the aforementioned

studies. Our results fit within the standard literature on how drivers respond to tolls.

3 Background

Our project setting is State Route 167 (SR167) in the greater metropolitan area of Seattle,

Washington. It is a connector road between the communities of Renton and Auburn south of

Seattle and the I405 freeway, which then feeds either into Seattle via I5 or Bellevue via I405.
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Instituted in May 2008 by the Washington State Department of Transportation (WSDOT),

the HOT lanes pilot project converted a ten mile stretch, in both directions, of SR167’s HOV

lanes into HOT lanes and continues to operate as of June 2017 (Figure 1). This location was

selected due to severe congestion in the GP lanes and excess capacity in the existing HOV

lane. At the onset of the project the objective was to fill the excess capacity in the HOV lane

by allowing some SOVs to purchase access. Congestion not only causes delays but reduces

the total carrying capacity of a road, so shifting cars from the GP to the HOV lane can

conceivably increase the total throughput in both lanes (Dahlgren, 2002). From a national

perspective 10 HOT Lanes are operating in eight states according to the U.S. Department of

Transportation.7 SR167 is likely a smaller road handling fewer cars than other HOT lanes.

Figure 1: SR167 HOT Lanes Map, (WSDOT, 2013)

The primary role of the toll is to regulate access to the HOT lane and maintain a mini-

mum level of service, thereby not discouraging use of the lane by HOV and transit. Prior to

implementation the GP lanes averaged 30-35 miles per hour during congested periods, with

a speed limit of 60 mph, resulting in delays of roughly 50% relative to free flow. Prior to

converting to HOT lanes the HOV lanes experienced little to no congestion (Wilbur Smith

Associates, 2006). As of 2012 WSDOT attributed the HOT lanes with a host of desirable

7Information available at https://ops.fhwa.dot.gov/publications/fhwahop12031/fhwahop12025/

index.htm.
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outcomes including: decreased congestion in the GP lanes, decreased peak congestion, main-

tained free flow in the HOT lanes, increased capacity of the corridor, increased safety and

revenue neutrality (WSDOT, 2012). The pilot program, originally set to expire in 2012, has

been extended and there are plans to convert and additional six miles from HOV to HOT

lanes.

Assessing the willingness to pay for toll lanes is a requirement to determining toll levels

that meet traffic volume priorities. Problematic assumptions by WSDOT in terms of the

demand for HOT usage manifested in poor revenue forecasts as seen in Figure 2. Although

revenue generation was not the primary objective for WSDOT, it is clear that there was

a fundamental misunderstanding of the trajectory of usage and the driver response to the

introduction of a tolled alternative lane.8

Figure 2: SR167 Revenue: Forecasts vs Actual, (Wilbur Smith Associates, 2006)

Along the ten mile stretch that comprises our project setting, SR167 has three north-

bound lanes and three southbound. In each direction there are two GP lanes with the third

lane reserved for HOT use. HOVs require no additional equipment to use the lane, but SOVs

that use the HOT lane must have purchased and installed a WSDOT ‘Good to Go’ (GTG)

pass that registers a vehicle’s passage and collects the posted toll. Transponder detectors

8Other factors including a general decrease in travel demand due to the global financial crisis also con-
tributed to the erroneous forecast.
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are installed at ‘gates’ that are the only legal entry and exit points for the HOT lane. There

are six gates in the northbound direction and four gates southbound, with a double white

line separating the GP and HOT lanes between gates.

The GTG passes can be used for all tolling facilities operated by WSDOT, including

the SR520 Bridge and the Tacoma Narrows Bridge in addition to the SR167 HOT lanes.

Both individuals and businesses can purchase GTG passes. While WSDOT does track both

commercial and individual accounts, individuals with many users (a large family) could also

purchase a commercial pass. WSDOT could not provide us with separate or tagged samples

of usage broken out by account type so we were unable to uncover what effect this has on

our estimates. However, purchasers of HOT access who do not bear the burden of the price

would be expected to decrease the magnitude of our estimates of price sensitivity, and so we

consider our elasticity estimates to be lower bounds in absolute value.

While we do not observe each unique driver in our HOT usage data we do have a summary

of those who use the HOT lane by zip code and frequency of use. One factor that impacts

HOT use is the penetration of GTG passes. The unique number of HOT users on SR167 has

been rising steadily, from 21,623 unique drivers in 2008 to 38,025 in 2011.9 We also obtained

summary statistics for the frequency of use for individual drivers. We find that most drivers

use the HOT lane only sparingly. The mean annual number of tips is just under seventeen,

but the median is only two with a large number of drivers only paying once or twice in a

year. While we may expect there to be different behavior between frequent and infrequent

users, Liu et al. (2011a) find that the behavior is very similar between these two user classes.

We therefore are not concerned about the skewness of the frequency data.

9It should be noted that the HOT lanes were implemented in May 2008 so the 2008 figure is incomplete.
Likewise through the end of September 2012 the HOT had 29,623 unique paying users. For reference, there
are approximately 44,000 zip codes in the U.S., and 170 zip codes in the Seattle metropolitan area
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4 Methodology

Our objective is to identify the pure behavioral response of toll prices on the demand for

purchasing access to the HOT lane. The structure of the tolling algorithm dictates that

prices increase as HOT speeds decrease and HOT volume increases. The changes in speed

and volume are computed every five minutes taking the difference between data at the

five minute mark and the average of the previous four minutes. For instance, conditions

from 7:59-8:00 are compared to the average conditions from 7:55 through 7:59 to calculate

the price at 8:00-8:05. Therefore, drivers do not impact their own toll rate, but rather for

drivers traveling behind them. However, traffic conditions exhibit a high degree of persistence

leading to autocorrelation in the variables of interest (see Figure 3). Not accounting for such

a high degree of autocorrelation results in biased coefficients. The econometric challenge to

identification in our setting can be outlined based on the following equation:

yit = βp(yIt−1)it + θXit + εit (1)

In this specification yit is the count of SOV drivers in the HOT lane at gate i and time t,

and p(yIt−1)it is the price at gate i and time t, which is a function of traffic at the current and

downstream gates I ∈ [i, i+ 1, ...i+n], in the previous (t− 1) period where n is the terminal

gate.. Since current prices depend on lagged counts of HOT users, the OLS estimates of

β will be biased in the presence of autocorrelation. This can be seen in equation 2 by

substituting in the value of yit−1 in the for p(yIt−1)it, which contains εit−1. Formally, the

OLS estimates are biased if E[p(εit−1)εit] 6= 0.

yit = βp (βp(yIt−1)it + θXit−1 + εit−1)it + θXit + εit (2)

Since, traffic is highly persistent and unobserved factors in the previous five minutes are

correlated with current HOT usage, which likely biases the OLS estimates. We therefore

first difference (FD) the data to reduce the serial correlation (see Figure 3). This requires
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the less stringent assumption that the first differenced error terms exhibit zero autocorre-

lation (E[p(∆εit−1)∆εit] 6= 0). The first differenced equation is seen in equation 3.10 The

interpretation of differenced data is also more attractive in the context of dynamic tolling.

We know that both the toll and usage will be high during periods of congestion, but what

we hope to recover is how drivers respond to changes in the toll rate. Increasing the toll

as congestion increases is the central tenant of dynamic congestion pricing and is critical to

managing HOT lanes.

∆yit = β∆p(yIt−1)it + θ∆Xit + ∆εit (3)

Figure 3: Price and Count ACF
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Notes: The autocorrelation function (ACF) of price and count and their respective first differences.

Since it is possible that E[f(∆εit−1)∆εit] 6= 0, in addition to differencing the data we

also instrument price at the gate using downstream traffic and price. Recall that prices

at gate i at time t are determined not just by traffic at gate i at time t − 1, but also

10Prior to estimation we perform several test for unit roots adapted for time series data do not find unit
roots in the data. Details can be found in Section A.3 in the Appendix.
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gates i+ 1, ...i+ n. Therefore, we expect the FD-IV specification requires the less stringent

assumption that E[f(∆εi+1,t−1)∆εit] = 0. The intuition is that when traffic conditions are

more severe downstream, drivers upstream will drivers will face higher tolls than would be

dictated by the traffic at their gate. A demand shock at gate 2 that does not impact traffic

at gate 1 will cause variation in the price at gate 1 that is uncorrelated with demand shocks

at gate 1.

Empirical Specification

Our specific estimating equation takes the form:

yit = βpit + γGPit + φE[TTsave|t] + λRt + ci + ht + dt + uit (4)

where the dependent variable, yit, is the count of SOVs in the HOT lane at gate i and time t,

and takes values y = {0, 1, 2, 3, . . . }. Equation 4 is similar to our equation 1 where we expand

the variables and parameters contained in θXit. Our parameter of interest is β, the coefficient

on the displayed HOT price, pit. We also want to recover the VOT and VOR, the marginal

rates of substitution between time and money and reliability and money. VOT and VOR are

represented by the ratios −φ
β

and −λ
β

respectively. Estimating all the preference parameters

jointly presents a more reliable methodology for estimating VOT and VOR compared to

simply dividing the toll by time savings, which is confounded with unobservables (Janson

and Levinson, 2014). We include the expected time savings (E[TTSave|t]) based on the

information available to drivers at time t as described in Section 5.3. Unlike Liu et al.

(2011b), who include realized travel time, we model this as an expectation based on the

expected difference in travel time since the actual time savings are unknown to the driver

when she makes the HOT purchase decision. Reliability (Rt) is the difference in reliability

between the GP and HOT lanes based on the reliability metric advocated in Small et al.

(2005). Additional controls include the speed in the GP lanes (GPit). We also include fixed
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effects for the gate of entrance (ci), hour of day (ht), and day-of-week (dt). The idiosyncratic

error term is represented by uit.

First-differencing equation 4 gives

∆yit = β∆pit + γ∆GPit + φ∆E[TTsave|t] + λ∆Rt + ∆uit (5)

where the coefficient of interest is β. We perform the first-differencing (FD) between time

periods on the same day and at the same gate. The fixed effects drop out as a result of

the first difference. Our FD instrumental variables estimation (FD-IV) replaces ∆pit with

∆p̂it, where the excluded instruments are downstream traffic and price (∆GPi+1,t, ∆yi+1,t,

and ∆pi+1,t).

5 Data

Our primary dataset consists of information collected by highway loop detectors and auto-

mated tolling systems.11 Loop detectors yield volume (number of vehicles) and occupancy

(percentage of time a vehicles are on top of the detector) for specific lengths of individual

lanes at five minute intervals. The data are publicly available through the Washington State

Transportation Center (TRAC) based at the University of Washington. Tolling data, ob-

tained from the WSDOT through a public disclosure request, includes date and time of toll

collection, entry-exit gate combination and the price paid. There are several challenges in

generating a viable dataset from the loop detector data. First we remove all observations

that have a data quality flag indicating infrastructure malfunction.12 Next we drop all ob-

servations on weekends and holidays as these are not representative of normal commuting

behavior. This leaves us with a time series of volume and occupancy for all loop detectors on

11Prior analysis also accounted for weather and gas price. Weather variables are reported hourly from
SeaTac airport, at a distance of 4.1 miles from SR167. Gas prices are the weekly average for the area of study.
In pursuing a first-difference estimation at the five-minute level these other controls vary too infrequently to
contribute.

12Of the 16,870,248 loop detector observations 4.8% were removed due to quality flags.
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the route for every valid five minute interval during our sample period. Speed is computed

from volume data based on Athol (1965)’s formula.

v =
q

o× g

where v = mean speed in mph

q = volume of vehicles

o = percent of lane occupancy

g = speed parameter, given by WSDOT as 2.4

Using imputed speed, TRAC also provided estimated whole-route travel times for the north-

bound and southbound directions, divided into HOT and GP, at five minute intervals. Our

final sample includes 1,071,743 observations of drivers entering the HOT lane between 2008

and 2011.

5.1 HOT Tolls

The tolling algorithm is designed to determine the price at five minute intervals using data

from the HOT lane and ensuring a minimum speed of 45 mph in the HOT lane. The

algorithm compares the current speed and flow with an average of the previous four minutes.

Ceteris paribus when either speed or flow is increasing (decreasing) the toll rate will decrease

(increase). We obtained the tolling algorithm without exact parameter values from WSDOT

under the condition that we not reproduce it, since it is proprietary to the consulting company

that designed it. Importantly for our study, the algorithm only incorporates HOT data and

does not consider traffic in the GP lanes. Additionally, while the toll at a given gate is based

upon data from loops around the gate, the toll may be overridden if downstream gates are

computing a higher toll. We exploit this feature of the tolling algorithm by using downstream

(further along the route) traffic and prices to generate instruments for the price that drivers
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face. WSDOT provided anonymous transponder recordings from SR167 including time of

day, amount charged, as well as entry and exit gate. The prevalent usage pattern, in both

directions, is to enter at the first gate and stay in the HOT lane until it ends (NB1 to NB6

and SB1 to SB4; see Figure A.1). The next greatest usage is characterized by entering at the

second gate and staying through the end, etc. A small minority of drivers pay the toll and

exit before the HOT terminates. These customers are not used in the estimation since our

instrument requires dropping data from terminal gates. Figure A.2 in the Appendix displays

the toll rates by time of day and gate location.

5.2 Survey

To capture demographic characteristics we obtained yearly surveys of SR167 HOT users from

WSDOT. The survey is sent to all email addresses attached to a GTG account that have

used the SR167 HOT lane at least once. It covers a broad range of topics including questions

about demographics and attitudes towards the HOT lanes. We focus on the income of HOT

users since previous research (Li, 2001) has identified this as an important characteristic

of use. Income is also a driver of VOT and will help put the VOT and VOR results in

context for generalizing the results. There are likely selection issues for estimating the

income distribution of SR167 from the survey data, but a priori the effects are ambiguous.13

To approximate the SR167 income distribution we use a weighted average of zip code

level data from the 2010 US Census, where the weights are the proportion of all HOT users

that came from a specific ZIP code. This method places more weight on zip codes that

use the SR167 HOT lane. We assume that the spatial distributions of HOT users and GP

users are similar. We cannot account for differences within a zip code between the average

household and the average GP user. Since HOT users may be more affluent than GP users

our method of constructing the SR167 income distribution is likely to be represent an upper

bound. Figure 4 presents the income from the survey of HOT users compared to our estimate

13For example, the survey sample may have higher income if they are more likely to have internet access,
or have lower income if they have a lower opportunity cost for completing the survey.
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of the income of all SR167 users from the weighted census data. It is clear that even the

upper bound of SR167 users’ income is substantially lower than the HOT users.

Figure 4: Differences in Income
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Notes: Census data are weighted by ZIP code frequency of 167 GTG users, and may be considered an upper
bound of income. Survey data are from annual WSDOT surveys of HOT users.

5.3 Travel Time and Reliability

To illustrate the difference in average travel time and reliability between the GP and HOT

lanes we plot the distribution of travel time over the course of the day in Figure 5 for both

the northbound and southbound routes. The travel times were computed by TRAC for every

five minute interval for both the HOT and GP lanes. The thick line represents the average

travel time at a given time of day and the shaded region is one standard deviation in travel

times at that time over all days in the sample. There are several noteworthy features in

Figure 5. First, the peak congestion periods are dramatic: there is a steep spike in traffic for

the GP lanes during the morning in the northbound direction and during the evening in the

southbound direction. The free flow rate, as evidenced by travel times in the middle of the
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night, is approximately 10 minutes in either direction. On average, the HOT lane maintains

close to free flow conditions throughout the day in the northbound direction and experiences

very minimal congestion during the evening peak in the southbound route. Comparing mean

HOT travel times to the average GP travel times during the peak commute shows that drivers

are saving roughly 3-6 minutes by paying for HOT access. The summary statistics for the

sample are presented in Table 1. Roughly 2.5 drivers purchase access to the HOT in the

average 5-minute period, and pay an average price of $0.68. The average time savings is 1.85

minutes, and the average difference in reliability is 1.17 minutes.

Previous research by Small et al. (2005) (among others) show that reliability is also an

important determinant of the HOT use decision. The shaded region shows that one standard

deviation in travel times in the GP lane can often exceed 20 minutes during the commuting

period.14 There is little variation in travel times in the HOT lane, indicating that relia-

bility is also a key attribute of the good. We follow Small et al. (2005) in constructing a

reliability measure, estimating the median and 80th percentiles in travel-time savings for

each 5-minute interval throughout the day for both the GP and HOT lanes using quantile

regressions. Coefficients for northbound and southbound directions are estimated separately.

The difference between the fitted values for the 80th and 50th quantiles is a measure of dis-

persion that approximates reliability for each lane. The reliability variable in the regression

is the difference in reliability between the GP and HOT lanes. Expected travel-time savings

are estimated from the fitted values of a linear regression of time savings on 5-minute fixed

effects, HOV counts, and GP speeds. Our specification for expected travel time savings is:

TTSaveit = β1HOVit + β2GPit + Dm + eit, where TTSaveit is realized travel time savings,

GPit is GP speed, HOVit is the count of HOV drivers in the HOT lanes, and Dm are fixed

effects for each 5-minute period in the day. This produces a forward thinking prediction of

drivers’ expectation of travel time savings when they make the decision to enter the HOT

14Although the graph shows a rough measure of travel time reliability, Peer et al. (2012) show that
commuters form expectations over time that generate perceptions of reliability. Thus, the raw data are
likely not the exact measure of travel time variability, and in the regression we control for as many factors
as possible such as removing weekends and holidays and including day-of-week fixed effects.
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Figure 5: Travel Time and Reliability
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data.

Table 1: Summary Statistics

Statistic N Mean St. Dev. Min Max

Count 1,071,743 2.41 3.96 0 46
Price 1,071,743 0.68 0.44 0.50 6.50
SOV 1,071,743 102.78 38.85 0.00 209.00
GP Speed 1,071,743 53.52 11.18 5.00 70.00
Reliability 1,071,743 1.17 0.93 −0.00 5.31
Expected Time Savings 1,071,743 1.85 1.56 −2.16 13.55

lane. Our specification assumes drivers form their expectation of travel time savings from

the HOT lane based on the time of day and traffic conditions.

6 Results

Coefficient estimates for both the OLS, FD, and FD-IV HOT counts are presented in Table 2.

Standard errors in OLS models (columns (1) and (2)) are robust to heteroskedasticity and

clustered by date and gate of entrance and the FD (columns (3) and (4)) are adjusted using

a first-difference robust variance matrix clustered by date and gate of entrance (Wooldridge,

2010). The OLS estimates are presented to show the impact of both simultaneity due to

autocorrelation and the omitted variable bias from not including expected travel time and
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reliability. Since the data are count we also estimate the regression in columns (1) and (2)

using a Poisson model. The results qualitatively similar and are available upon request.

Column (1) shows that in a simple OLS framework the price response is positive, significant,

and reasonably large in magnitude.15 Simply controlling for travel time and reliability, as the

seen in column (2), vastly decreases the magnitude of the estimate of the demand response

but it is still positive and significant. Columns (3) and (4) show the results of the FD model

and the FD-IV both produce a demand response that is negative and statistically significant

at the 1% level. While there are differences when using instruments for price the results are

relatively similar, indicating that autocorrelation is the primary driver of endogeneity.16

Our preferred specification, the FD-IV model shown in column (4), estimates that a

$1 increase in the price decreases HOT users by 0.579 within a 5 minute interval. This

finding stands in contrast to earlier research that identified a positive price response (Liu et

al., 2011b; Janson and Levinson, 2014). Transforming this to an elasticity at the average

quantity and price yields an estimated elasticity of −0.16. As expected higher GP speeds

decrease SOV purchases of HOT access since faster GP speeds decrease the benefits of

the HOT lane relative to the GP lane. The point estimates of VOT and VOR are $6.7

and $22.3 respectively indicating that drivers care more about reliability than time savings

when using the HOT lanes. VOT and VOR are investigated in more detail in Section 6.2.

While we do not have causal identification framework for estimating the parameters on

E[TTsave|t] and Reliability and we believe that these variables do not suffer from the same

endogeneity concerns as the price variables after first differencing the data. These variables

are constructed by distributional statistics from the entire sample, so an individual driver at

a given point in time has little ability to influence these variables. Additionally, we model

these as expectations that are not impacted by idiosyncratic demand shocks at time t.

15Since the data in columns (1) and (2) are counts we also estimate count models including Poisson and
negative binomial that produce similar results and are available upon request.

16Another explanation is that the FD model in column (3) still utilizes the quasi-random variation of
current prices being overridden by downstream prices.
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Table 2: First Difference and OLS Regressions

(1) (2) (3) (4)
OLS OLS FD IV-FD

Price 3.537∗∗∗ 1.245∗∗∗ -0.709∗∗∗ -0.579∗∗∗

(0.0697) (0.0588) (0.0225) (0.0262)
GP Speed -0.0341∗∗∗ 0.00734∗∗∗ -0.0103∗∗∗ -0.0129∗∗∗

(0.00186) (0.00203) (0.000711) (0.000744)
Reliability 0.549∗∗∗ 0.344∗∗∗ 0.215∗∗∗

(0.0372) (0.0203) (0.0195)
E[TT Save] 1.035∗∗∗ 0.0714∗∗∗ 0.0650∗∗∗

(0.0231) (0.00648) (0.00646)
Elasticity 1.00 0.35 -0.20 -0.16
VOT -49.9 6.0 6.7
VOR -26.5 29.1 22.3
Observations 1,071,743 1,071,743 1,056,997 839,394
F-Statistic 267.9

Note: The dependent variable is the count of HOT users in a five minute interval. The dependent and all independent variables
are in levels in columns (1) and (2) and first-differenced in columns (3) and (4). The decrease in observations from in the
FD model is due to dropping the first period. The decrease in observations in the IV model is due to dropping the last gate,
which has no spatial lead. Standard errors are robust to heteroskedasticity and clustered at the entry gate. ∗p<0.1; ∗∗p< 0.05;
∗∗∗p<0.01

6.1 Heterogeneity in Demand Elasticity

The price elasticity, as well as the VOT and VOR, depend on the features of the trip so

we investigate two important sources of heterogeneity: the time of day and trip direction.

Time of day is associated with congestion and also captures drivers on the traditional daily

commute to and from work. The peak period is defined as 6:00am-9:00am in the northbound

(NB) direction and 3:00pm-6:00pm in the southbound (SB) direction corresponding to the

morning and evening commutes.17 The heterogeneity with respect to route direction is

motivated by the argument that drivers face different incentive structures for utilizing the

HOT lanes driving to and from work.

Table 3 presents results of regressions that subset the sample by direction and peak

congestion period. Columns (1) and (2) subset the sample by direction, columns (3) and (4)

subset the sample by peak period, and columns (5) and (6) subset the sample by direction in

the peak period. The response to the toll is relatively consistent for most of the subsamples

with the exception of the off-peak sample. This may be due to lower range of prices that

17The peak period can be seen on the travel time graphs in Figure 5.

22



off-peak users face and/or the fact that off-peak HOT users may reflect commercial drivers

that do not pay the toll on their own.18 Figure 6 shows the different elasticity estimates for

the subsamples. Excluding the off-peak period shows a consistent demand elasticity ranging

form -.16 to -.21. The next section discusses both base effects of the value of time and

reliability and issues of heterogeneity.

Table 3: Heterogeneity by Gates, Congestion, and Direction

(1) (2) (3) (4) (5) (6)
NB SB Peak Off-Peak Peak:NB Peak:SB

Price -0.584∗∗∗ -0.575∗∗∗ -0.705∗∗∗ -0.178∗∗∗ -0.751∗∗∗ -0.634∗∗∗

(0.0342) (0.0389) (0.0327) (0.0272) (0.0443) (0.0451)
GP Speed -0.0131∗∗∗ -0.0119∗∗∗ -0.0169∗∗∗ -0.0104∗∗∗ -0.0175∗∗∗ -0.0138∗∗∗

(0.000838) (0.00147) (0.00160) (0.000581) (0.00182) (0.00286)
Reliability 0.373∗∗∗ 0.0785∗∗ 0.216∗∗∗ 0.208∗∗∗ 0.625∗∗∗ 0.0476

(0.0245) (0.0292) (0.0303) (0.0168) (0.0615) (0.0344)
E[TT Save] 0.0318∗∗∗ 0.118∗∗∗ 0.120∗∗∗ 0.0394∗∗∗ 0.0547∗∗ 0.258∗∗∗

(0.00861) (0.00954) (0.0158) (0.00499) (0.0203) (0.0248)
Elasticity -0.16 -0.16 -0.20 -0.050 -0.21 -0.18
VOT 3.3 12.3 10.2 13.3 4.4 24.4
VOR 38.4 8.2 18.4 70.4 49.9 4.5
Observations 622,468 216,926 179,970 659,424 133,231 46,739

Note: All models are based on the same specification in column (4) of Table 2. Columns (1) and (2) subset the sample by
direction, columns (3) and (4) subset the sample by peak period, and columns (5) and (6) subset the sample by direction in the
peak period. Standard errors are robust to heteroskedasticity and clustered at the entry gate. ∗p<0.1; ∗∗p< 0.05; ∗∗∗p<0.01

Figure 6: Price Elasticities by Model
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Notes: The thick bars represent the mean estimates for average elasticity and the thin bars are 95% confidence
intervals calculated by the delta method. The estimates are based on the price parameter as well as average
quantity and price in the relevant subsample for regressions in column (1) - (3) of Table 3.

18The average peak price is $1.15 compared to the the average off-peak price of $0.55.
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6.2 Value of Time and Reliability

A simple estimate of the Value of Time (VOT) is just the toll divided by the realized time

savings. Though as stated above this measure produces unrealistically high VOT estimates

on dynamically priced HOT lanes.

V OT =
Toll

TTGOP − TTHOT

Before presenting the jointly estimated VOT and VOR from the regressions we show the

distribution of the simple VOT from SR167 in Figure 7. VOT is constructed by simply

dividing the toll by the difference in travel time between the GP and HOT lane for each

5-minute interval in the sample.19 It should be noted that the simple VOT is the minimum

that a driver is willing to pay for the realized time savings, assuming all benefits are due

to time savings. The average VOT using the simple method is $38 dollar per hour and is

designated by the red dashed line in Figure 7. Approximately 0.7% of drivers experience a

negative simple VOT where the travel time in the GP lane was faster than the HOT lane.

Columns (1) and (2) (as well as (5) and (6)) of Table 3 show that drivers have a relatively

similar price responsiveness in both directions, but NB driver primarily value reliability and

SB drivers primarily value time savings. Figure 8 presents the estimates of VOT and VOR

defined as the ratio of the preference parameters. It is important to note that this requires

a negative coefficient on price in order to obtain a valid estimate of the marginal utility of

income defined as negative one times the dis-utility of the toll. The estimates in Figure 8 are

based on the regression models presented in Table 3, as well as the base model from column

(4) of Table 2. Since VOT and VOR are nonlinear combinations of parameters Figure 8

reports the mean and 95% confidence interval using the delta method.

When interpreting the relative magnitudes of VOT and VOR it is important to consider

that although they are both measured in hours these values are based on different vari-

19All observations with negative time savings and time savings above $100 are not shown in the figure but
are used to construct the average.
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Figure 7: Simple Value of time

0

5000

10000

0 25 50 75 100
Value of Time ($/hr)

C
ou

nt

Notes: Simple VOT is based on toll and loop detector data. The red dashed line is the average. The figure
is does not show negative values or values above $100/hr to assist in the viability.

ables in the regression. However, based on the summary statistics provided in Table 1 the

means and variance of expected times savings are relatively similar. Additionally, when we

aggregate the values over the observed time savings and reliability we get similar relative

magnitudes as our base estimates of VOT and VOR.20 The main result is that VOR is more

important than VOT. In the base specification the reliability ratio (VOR/VOT), is 3.3 and

statistically different than 1, indicating that reliability is more important in using the HOT

lane than time savings. These results suggest that the simple estimates of VOT on HOT

lanes overestimate the true VOT, and that much of the purchase decision is actually based

on improved reliability.

There is substantial heterogeneity in VOT and VOR. Northbound travelers greatly prefer

reliability to time savings, which may indicate the need to arrive at work at a specified time.

Conversely, the difference between VOT and VOR for southbound drivers is not statistically

20We find that for our parameters VOR represents 77% of the total value (VOR/(VOT+VOR) = 77%) and
aggregating over the observed time savings and reliability improved reliability generates 68% of aggregate
benefits.
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significant. The peak VOT is statistically significantly larger than the base specification and

the reliability ratio decreases to 1.8 during the primary commuting period.

Breaking down the heterogeneity further by focusing on the peak period shows that

drivers in the morning commute to work (NB) value reliability over time savings while

drivers returning home (SB) prefer time savings. This is intuitive given that drivers need to

get to work on time and they just want to return home quickly.

The heterogeneity also suggests that transportation managers can optimize the toll al-

gorithms for HOT lanes based on simple observable differences in usage behavior. Drivers

that value reliability may not be as sensitive to the toll rate and will purchase HOT access

at a wide range of prices. Conversely those who value time savings may be more sensitive

to the toll rate and traffic conditions when deciding to use the HOT. However, since time

savings and reliability are correlated a more detailed analysis is required to investigate the

relationship between VOT, VOR, and price elasticity.
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Figure 8: Value of Time and Reliability
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intervals calculated by the delta method. The means are based on dividing the time savings and reliability
parameters by the price coefficient from the regressions in Table 3. The confidence intervals are created
using the delta method.

6.3 Robustness

We also perform several robustness checks presented in Table 4. All regressions presented

in Table 4 have the same basic from as the our preferred regression (Table 2 column (4)),

which is shown in column (1) of Table 4 for reference. The first three robustness checks

add additional control variables: column (2) adds gate-specific time trends, column (3) adds

HOT speed, and column (4) adds HOV Volume. All the parameter estimates are relatively

stable across these specifications. Next we test the robustness of the instrument by using

two (i + 2) and three (i + 3) spatial leads of traffic conditions and prices. This addresses

the concern that since we are using 5-minute bins some of the drivers in gate i may also be

registered at gate i + 1 at time t. The main parameters of interests are quite similar with

the exception of an elasticity value that is larger in absolute value when using three spatial

leads. The higher elasticity may reflect that we need to drop almost half of the observations
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when using three spatial leads as opposed to one spatial lead. Lastly, we also estimate a

log-log specification where the dependent variable is the natural log of counts and the price

variable also undergoes the logarithmic transformation. This is an alternate estimate of the

elasticity, but we don’t estimate VOT and VOR because the interpretation of the marginal

rates of substitution changes when using the log of price. The elasticity is slightly lower in

absolute value, but relatively similar in magnitude.

Table 4: Robustness

(1) (2) (3) (4) (5) (6) (7)
Base Time Trend HOT Speed HOV Volume 2-Leads 3-Leads Logs

Price -0.579∗∗∗ -0.579∗∗∗ -0.631∗∗∗ -0.559∗∗∗ -0.559∗∗∗ -0.979∗∗∗

(0.0262) (0.0262) (0.0379) (0.0297) (0.0297) (0.0636)
ln(Price) -0.116∗∗∗

(0.00609)
GP Speed -0.0129∗∗∗ -0.0129∗∗∗ -0.0143∗∗∗ -0.0123∗∗∗ -0.0123∗∗∗ -0.0141∗∗∗ -0.00373∗∗∗

(0.000744) (0.000744) (0.000853) (0.000802) (0.000802) (0.00120) (0.000165)
Reliability 0.215∗∗∗ 0.215∗∗∗ 0.271∗∗∗ 0.195∗∗∗ 0.195∗∗∗ 0.338∗∗∗ 0.0511∗∗∗

(0.0195) (0.0195) (0.0246) (0.0197) (0.0197) (0.0331) (0.00408)
E[TT Save] 0.0650∗∗∗ 0.0649∗∗∗ 0.0652∗∗∗ 0.0415∗∗∗ 0.0412∗∗∗ 0.0672∗∗∗ 0.0152∗∗∗

(0.00646) (0.00646) (0.00826) (0.00704) (0.00705) (0.0119) (0.00158)
Elasticity -0.16 -0.16 -0.18 -0.16 -0.16 -0.28 -0.12
VOT 6.7 6.7 6.2 4.5 4.4 4.1
VOR 22.3 22.3 25.8 21.0 20.9 20.7
Observations 839,394 839,394 621,916 664,674 664,674 420,266 839,394

Note: All models are based on the same specification in column (4) of Table 2, which is reproduced in column (1) for reference.
Column (2) adds gate-specific time trends, columns (3) and (4) add HOT speed volume respectively as control variables.
Columns (5) and (6) use two and three spatial leads for the instrument respectively. Column (7) estimates the equation using
the using the natural logarithm of counts and prices. Standard errors are robust to heteroskedasticity and clustered at the
entry gate. ∗p<0.1; ∗∗p< 0.05; ∗∗∗p<0.01

6.4 Aggregate Time Savings and Reliability Benefits to HOT Users

Combining the VOT and VOR estimates with the realized time savings and improvements in

reliability generates monetary benefits to drivers paying the toll on SR167.21 These benefits

focus on the dollar value of time savings and reliability for those that purchase access to the

HOT lane and omits other attributes of the toll, such as reducing the dis-utility of being

stuck in traffic or improved safety. Thus, the estimates presented should be considered lower

bounds of the benefits to HOT drivers. Our base specification produces aggregate benefits

21Aggregate benefits from time savings are equal to V OT ×
∑

it TTsaveit and aggregate benefits from
reliability are equal to V OR×

∑
it Reliabilityit.
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of $3.4 million, and 68% of the benefits come from improved reliability. This corresponds to

roughly $1.30 in consumer benefits per trip, which is roughly twice the value of the average

toll. If we generate benefits using the separate estimates for NB and SB drivers the total

benefits increase slightly to $3.9 million. In the NB direction 87% of the benefits are from

improved reliability, whereas SB the majority of the benefits stem from time savings - only

35% of the benefits are from better reliability.

The benefits exclusively focus on the benefits to SOV drivers purchasing access to the

HOT lane. WSDOT claims (WSDOT, 2012) that during the sample period HOT lane

usage increased while maintaining 45 MPH over 99% of the time so there are unlikely to be

negative impacts on HOV users and public transit riders. Additionally, GP speeds increased

during peak periods according to WSDOT. WSDOT’s estimates should not be interpreted

as causal impacts of HOT implementation on traffic on SR167, but if the drivers in the GP

lane experience improvements in reliability and decreases in travel times then substantial

benefits will accrue to drivers on the GP lanes. However, since HOT users are wealthier

on average we caution the extrapolation of VOT and VOR parameters from HOT users to

the GP lane. Overall, it appears that drivers paying the toll achieve significant gains from

conversion of SR167 to a HOT lane.

7 Conclusion

The scale of congestion costs in the United States warrants new approaches to managing

our roads. A burgeoning approach to managing congestion is to introduce a HOT lane,

either by converting existing HOV lanes or when adding new road capacity. The use of

new technology, such as real time congestion pricing, gives road operators a powerful tool

for managing congestion while at the same time collecting much-needed revenue. While

there has been applied work in the transportation literature, as well as theoretical economic

research on HOT lanes, there has been little empirical economics research using revealed
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preference data on how consumers respond to HOT lanes. The few studies using revealed

preference data on HOT lanes have estimated a positive price response that is inconsistent

with economic theory. If higher prices actually cause drivers to move into the HOT lane the

basic premise of dynamically priced HOT lanes is flawed. We provide evidence that prior

results are due to a failure to address issues of serial correlation and simultaneity inherent

in dynamic pricing, as well as not accounting for the bundle of attributes that HOT lanes

deliver.

We employ a first difference estimation strategy to recover a negative price elasticity by

overcoming simultaneity in the dynamic pricing structure due to autocorrelation in travel

demand. The negative demand response enables us to jointly estimate the value of time and

reliability. We find a negative and substantial elasticity of approximately −0.16, indicating

that causal behavioral response of drivers to higher tolls is to reduce the quantity demanded.

This negative elasticity has important policy implications: if the demand for HOT lanes is not

downward sloping then the entire premise of dynamically priced HOT lanes as a congestion

management mechanism is fatally flawed. Given a positive price response higher prices will

induce higher usage, and the cycle will continue until the lanes reaches its performance

constraint.22

The elasticity estimates are relatively low in absolute value and may reflect that many

drivers on SR167 may have set patterns - they either always use the HOT lane or always

use the GP lane. Thus, we are identifying our elasticity estimate only based on the drivers

who are sensitive to the toll. It should be noted that the elasticity estimate depends on the

features on the SR167 HOT lane, including the pricing algorithm. The elasticity estimate

can improve revenue forecasts for HOT lanes, and provide insight when developing dynamic

pricing algorithms. Consumers may be relatively insensitive to price at the price intervals on

SR167; more than 95% of observed prices in our sample ranged between $0.50 and $2.50 and

the maximum price was $6.50. Transportation planners may need to charge higher prices

22In our setting it was necessary to restrict HOT Lanes to HOV traffic between 0.33% and 0.14% of the
time during toll hours. The variance arises from measuring closure rates at the road segment level.
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is to be able to deter SOV drivers from entering HOT lanes the prices. Inelastic demand

also means that setting higher toll rates will likely increase the revenue generated from HOT

lanes. Further research that examines multiple HOT lanes with different pricing structures

can determine the extent that the tolling algorithm impacts demand parameters.

The set of drivers sensitive to the toll is also likely a function of the dynamic pricing

structure, and HOT lanes that have high prices that rapidly respond to traffic conditions

may increase the set of drivers who are sensitive to the toll, and consequently the magnitude

of the price elasticity. The analysis of VOT and VOR show that drivers primarily value

reliability rather than time savings. There is heterogeneity in VOT and VOR; drivers value

reliability during the morning commute and time savings during the evening commute. The

aggregate benefits to HOT users on STR167 is estimated to be $3.4 million. The monetary

benefits show that there are large benefits to drivers from using HOT lanes. If the the GP

lanes also the benefit from decreased congestion due to traffic diverted to the HOT lanes the

benefits may be significantly larger.
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A Online Appendix

A.1 Trip Combinations

Figure A.1: SR167 trip combinations
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Notes: The horizontal axis indicates the entry gate and the colors designate exit gates. The number of
purchased tolls for each combination is on the vertical axis. The thickness does not convey variation in the
data, and is meant to properly space the figure.

A.2 Prices by gate
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Figure A.2: Price by Section
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Gate locations were determined using this tool.

North Bound:

• NB1 13.83

• NB2 15.10

• NB3 16.60

• NB4 18.61

• NB5 20.28

• NB6 22.90

• ends 25.09

South Bound:

• SB1 25.64

• SB2 23.70

• SB3 20.53

• SB4 18.99

• ends 17.03

A.3 Panel Data

Our data can be interpreted as a ‘pseudo’ panel in the sense that we repeatedly observe

usage at individual entry gates. Structured this way, N = 10 (six northbound plus four

southbound gates) and T = 1, 215, 000 (although T will vary according to different missing

data at different gates). ‘Pseudo’ panels such as we are proposing here are likely to violate

the dynamic homogeneity assumption underlying true panel data models (Im et al., 2003).

Understanding that the data might display dynamic heterogeneity informs our choice of

unit-root tests presented later in this section.

We employ three tests to explore the heterogeneity of our ‘pseudo’ panel based on Holtz-

Eakin et al. (1988); Holtz-Eakin (1988):
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1. an F-test for parameter equality from an Augmented Dickey-Fuller estimation with

third order lag (ADF(3)),

2. another F-test from a third order autoregressive (AR(3)) regression across all variables

and

3. finally White’s test for groupwise heteroskedasticity.

A rejection of the null in the F-tests indicates heterogeneity across parameters while a re-

jection of the null in White’s test indicates an inequality of variance. We performed White’s

test using a regression of the residuals from the ADF(3) regression on the original regressors

and their squares. The test statistic is (NT )∗R2 ∼ χ2, where the degrees of freedom are the

number of regressors from the second stage. Table A.1 presents the statistics, all of which

reject the null of parameter and variance homogeneity at the 1% significance level.

Table A.1: Dynamic Heterogeneity Tests

Test White ADF AR
F Statistic 261017.62 2037.24 1018.45
Notes: White’s test tests the equality of variance, the ADF(3)
and AR(3) test for parameter equaltiy across an ADF and AR
equation respectively. The number of obserations is 1, 282, 349

Given parameter and variance heterogeneity we employ two unit root tests for panel data:

that developed by Im et al. (2003) and a cross-sectionally augmented version of Im et al.

(2003) proposed by Pesaran (2007). We begin with the following formula:

yit = αi + βiyi,t−1 + εit (6)

where i = 1, . . . , N for each gate, t = 1, . . . , T represents the time periods and yit represents

each series in the panel. The traditional panel unit root test developed by Im et al. (2003)

fits the following ADF equation

∆yit = αi + βiyi,t−1 +

pi∑
j

ρij∆yi,t−j + εit (7)
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where pi is the number of lags (here three). This is estimated for each variable in the panel

across each cross section. A ‘t-bar’ statistic is formed as the average of the individual cross

sectional ADF(3) statistics according to the following equation

t-bar =
1

N

N∑
i=1

tρi (8)

The null is that each series in the ‘pseudo’ panel contains a unit root. Rejection of the null

indicates that there is no unit root in any cross sectional series. Im et al. (2003) show that

the statistic is normally distributed under the null and provide critical values for given N

and T . The t-bar for each series is presented in Table A.2 and reject the null of unit roots

at about the 1% significance level.

This traditional Im et al. (2003) unit root test can be modified to account for cross-

sectional dependence. Pesaran (2006) shows that the effects of unobserved common factors

in panel data can be eliminated by filtering the cross-sectional mean. Extending this work to

unit roots in Pesaran (2007) leads to the following cross-sectionally augmented DF (CADF)

regression

∆yit = αi + βiyit−1 + γiȳt−1 + δi∆ȳt + εit (9)

where ȳt is the cross-sectional mean. The t-statistics on the β coefficient are estimated from

each unit i of the panel, with the average forming the CIPS statistic

CIPS = t-bar
1

N

N∑
i=1

tβi (10)

Results from the tests are presented in Table A.2 and indicate there are no unit roots in

the series.
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Table A.2: IPS Panel Unit Root Tests

Variables ADF ADFtrend CADF CADFtrend
Count -56.67 -56.79 -57.55 -57.69
Price -45.67 -45.80 -42.48 -42.51
Volume After Gate -56.25 -56.97 -60.10 -64.28
Speed Before Gate -68.20 -68.25 -68.55 -68.92
Speed at Gate -56.74 -57.07 -61.90 -62.54
Speed After Gate -63.15 -64.50 -66.17 -69.22
Value of Reliability -40.68 -40.68 -28.83 -28.83
Expected Time Savings -29.38 -29.38 -15.53 -15.51
Proportion -59.75 -61.07 -61.84 -64.23
Notes: All tests are conducted using three lags. Columns with ‘trend’ include an individual
time trend in the regression. All tests reject the null of an unit root at greater than 1%
significance. Total number of observations is 1, 282, 349.
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