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Abstract 

 

Many cities provide incentives for private landowners to install green stormwater 

infrastructure (GSI) to reduce stormwater runoff and deliver co-benefits of 

urban greening. We analyze how participation in a GSI subsidy program 

affects the spatial distribution of urban greening. The distributional effects 

manifest in two stages: program eligibility and participation decisions. 

Eligibility, determined by hydrological factors, is positively correlated with 

wealthier and whiter areas. Within eligible areas, the wealthiest households 

and least white neighborhoods have lower participation rates.  The findings 

highlight the importance of considering eligibility and participation in 

balancing the joint goals of environmental quality and environmental justice. 
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1 Introduction 

 
Voluntary environmental policies, such as subsidies or rebates for environmentally friendly 

products, often generate both public and private benefits. For example, installing an energy 

efficient appliance will contribute to public goods of reduced greenhouse gases and local  air 

pollution while simultaneously saving the owner money on their utility bills. The type  of 

households or firms that participate in voluntary environmental programs, along with  their 

funding sources, will determine the distributional consequences of those programs.  These policies 

may enhance or hinder environmental justice objectives by diverting resources to specific groups. We 

investigate the distributional consequences of voluntary environmental policies in subsidies for green 

stormwater infrastructure (GSI) by examining how participation varies across wealth, income, and 

race. Eligibility decisions by program managers and participation decisions by eligible 

household shape the spatial distribution of local co-benefits of GSI policies primarily designed to 

reduce stormwater runoff. 

Cities around the world have made significant public investments in urban greening. Urban 

greening is associated with increased walkability, reduced stress, better air quality, and improved 

cardiometabolic health (Cavanagh et al., 2009; Currie and Bass, 2008; Pugh et al., 2012; Kardan 

et al., 2015; South et al., 2018; Sugiyama et al., 2008; South et al., 2015). Greening reduces urban 

heat island effects (Bowler et al., 2010; Ziter et al., 2019), which is especially salient as many cities 

face increasingly hot summers (Jiang et al., 2019). Greening also helps manage urban stormwater 

runoff volumes and quality. Consumers value the local public benefits of urban greening as several 

studies show that trees and green space capitalize into private home values (Sander et al., 2010; 

Netusil et al., 2010; Kadish and Netusil, 2012). 

The benefits of urban greening are not delivered equitably in many cities, even though the 

costs of urban greening are borne by all taxpayers or utility ratepayers. In the United  States, for 

example, neighborhoods that were historically “redlined” and subject to racial discrimination 

have fewer trees and are hotter than areas that were not redlined (Hoffman et al., 2020; Locke et 

al., 2020; Wilson, 2020)1. Analysis of Atlanta, Georgia, U.S. indicates that Black communities 

currently have the least access to urban green spaces (Dai, 2011). Similarly, even without a history 

of redlining researchers in Australia find low-income neighborhoods are less green (Astell- Burt et 
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al., 2014). 

Many water and stormwater utilities run programs that promote broad-scale urban 

greening by implementing GSI. The impetus of most GSI programs is to reduce runoff during 

storms that deliver enough stormwater to exceed the capacity of the conveyance system or 

wastewater treatment plant, resulting in untreated wastewater being discharged into local water 

bodies. In the U.S., these discharges, known as combined sewer overflows (CSOs), constitute 

violations of the Clean Water Act. Many water agencies are required to reduce their CSOs and 

operate under consent decrees with the U.S. Environmental Protection Agency. Proposed CSO 

solutions include implementing multi-billion dollar stormwater management programs (U.S. 

EPA 2017), many of which rely heavily on GSI (BenDor et al., 2018).2 In addition to reducing 

stormwater runoff, GSI facilities like bioswales, raingardens, and green roofs contribute to the 

larger suite of co-benefits associated with urban greening.  

Cities use three primary forms of GSI policies. First, GSI is often required for new 

construction or additions as part of zoning regulations. Second, local governments and 

utilities install and maintain GSI in public spaces. Examples include large bioswales, 

retention ponds, green streets, and raingardens in public spaces like parks and rights-of-way.  

Research suggests, however, that in some cities there is not enough public land available to 

achieve the density of GSI needed to meet stormwater reduction targets required for water 

quality goals (Montalto et al., 2007). Therefore, the third type of policy focuses on subsidizing 

installation of GSI on private land, such as single family residential properties. Cities justify 

subsidies because GSI is a quasi-public good that provides a combination of private and public 

benefits. This quasi-public good nature also means that private benefits flow to homeowners 

and immediate neighbors who install subsidized GSI, including capitalizing into home values, 

while all ratepayers or taxpayers bear the cost. Research indicates that consumers are willing 

to pay for GSI on their properties (Zhang et al., 2015; Iftekhar et al., 2021). Because GSI 

subsidies transfer resources from ratepayers to participating homeowners and neighbors, there are 

equity and environmental justice consequences of these policies. 

We study the distributional impacts of voluntary GSI policies using data from the Rain- Wise 

program in Seattle and surrounding King County that subsidizes raingardens and cisterns. Our 

primary research question is how private benefits of the RainWise program are distributed across 
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ratepayers funding the program. In RainWise, as in many other voluntary environmental programs, 

there are two channels that drive distributional impacts: 1) the screening of whether a homeowner 

is eligible for participation and 2) the choice to participate. GSI program managers will rationally 

target GSI investments to places that are likely to lead to the largest water quality benefits, which 

may inadvertently correlate spatially with income or even mimic historic patterns of housing 

discrimination. For example, if installations to prevent CSOs have the largest impact when 

installed near a water body that receives stormwater flows, the eligibility stage could be 

regressive, as water-adjacent or waterfront homes often sell at a premium. Furthermore, almost 

all programs have home ownership as the primary eligibility screen, which is strongly correlated 

with income in the United States (Bhutta et al., 2020). We also analyze the distributional impacts 

of private decisions to participate in voluntary GSI programs, conditional on eligibility. These 

features may vary depending on the location, eligibility constraints, and the design of the 

program.  

We make three contributions to the literature. First, we estimate the distributional 

impacts of a voluntary environmental program using household-level observational data. Prior 

research on GSI adoption has used neighborhood-level participation rates and did not focus on 

environmental justice concerns (Ando and Freitas, 2011; Lim, 2018). We examine the 

distributional effects across three key variables: wealth, income, and race. Using household-

level data is important when participation effects are non-linear, since average Census block 

group characteristics can mask heterogeneous effects. Second, we consider how both the 

household participation decision and the utility’s eligibility criteria affect the overall distributional 

effects of the policy. This is critical because we find that eligibility and voluntary participation 

channels have opposing effects on the progressivity of the program. Third, we utilize a novel 

method for measuring the type of households that select into voluntary programs by using 

housing sales prior to a household signing up for a program. This isolates the selection effect 

from any potential capitalization effect from GSI. Housing sales data are often available at the 

household level, which makes prior sales an attractive metric for studying distributional effects 

of programs where the location of the participating homes is known.  

We find that RainWise administrators (inadvertently) chose eligible areas that were, on average, 

wealthier than a typical Seattle neighborhood, which is in turn wealthier than a typical King 



5  

County neighborhood. Our results show that, conditional on eligibility, upper middle-class 

households are most likely to participate. Within eligible areas, the wealthiest households and 

neighborhoods with the highest concentration of minorities have lower participation rates. The 

challenge of recruiting the most disadvantaged households persists even though resources were 

deployed to specifically target low-income and minority households. The aggregate distributional 

effects depend on both eligibility and participation. Among all ratepayers, the average home price is 

similar for program participants and nonparticipants, but conditional on eligibility, participants live 

in less expensive homes than non-participants. E x a m i n i n g  t h e  e f f e c t s  a c r o s s  t h e  

h o u s i n g  v a l u e  d i s t r i b u t i o n  s h o w s  t h a t  the least and  mo st  expensive homes in 

King County are less likely to participate relative to homes in the upper-middle portion of the 

housing value distribution. Applying quantile regression to our hedonic selection model we find 

highly nonlinear selection effects across the house price distribution. We also examine variation 

in the cost of individual GSI installations. GSI in the wealthiest homes are substantially less cost-

effective in terms of the gallons of stormwater mitigated per dollar.  This suggests wealthier homes 

may prioritize aesthetic features of GSI, and that selection effects do have economic consequences. 

Our research engages with growing discussions of how to evaluate benefits from environmental 

policy. Much of the environmental justice movement, including the EPA3 and the academic 

literature, has focused on exposure to environmental hazards such as pollution, toxic waste, and water 

contamination (Mohai et al., 2009; Banzhaf et al., 2019). Recent examples in economics show that 

the Clean Air Act has reduced absolute differences in racial disparities in air pollution exposure 

while relative differences persist (Colmer et al., 2020). We contribute to this literature by examining 

the distributional implications of the co-benefits from GSI policy, as opposed to the direct effects of 

reducing pollution. We also contribute to the growing economics literature on GSI. Most of the 

current literature uses stated preference (Londoño Cadavid and Ando, 2013; Newburn and Alberini, 

2016; Brent et al., 2017; Ando et al., 2020) and revealed preference (Zhang et al., 2015) methods to 

estimate the willingness to pay (WTP) for the benefits of GSI. We focus on who receives those 

benefits when cities employ policies incentivizing voluntary installation on private property. 

 

2 Background & Setting 

 
Seattle discharged 1.1 billion gallons of raw sewage annually by CSOs from 2006-2010 (Times, 
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2013). The city’s consent decree with the U.S. EPA requires reducing CSOs by 95% by 2025 

(EPA), 2013). As part of the EPA consent decrees, King County and Seattle developed an 

integrated stormwater management plan with a prominent role for GSI. Seattle and King County plan 

to collectively reduce 700 million gallons of their stormwater mitigation requirements through GSI.4 

The costs of stormwater mitigation were estimated at $700 million for King County and $600 

million for the City of Seattle, managed by King County Land and Water Division and Seattle 

Public Utilities (SPU), respectively.5 The City and County work collectively towards their 

stormwater mitigation requirements. They construct, own, and operate public GSI, and require any 

new construction (or renovations that increase impervious surface) to include mandatory on-site 

private GSI.6 

RainWise is a voluntary GSI program subsidizing cisterns and/or raingardens on private 

residential properties and is jointly operated by King County and SPU. Each utility is responsible for 

funding RainWise in specific eligible CSO basins, though all eligible basins are within Seattle city 

limits.7 A CSO basin is an area that drains to a specific CSO location (see Figure A.1 in the 

Appendix) based on the sewer network. Eligibility is restricted to basins deemed most critical to 

meet water quality goals.8 

All residential properties in an eligible basin can receive RainWise subsidies for cisterns, and 

raingarden eligibility is further restricted by land stability, drainage, and distance to contaminated 

sites.9 RainWise cisterns and raingardens must be installed by an approved contractor. The 

homeowner signs a contract that the system must be maintained for a minimum of five years. 

Uptake of RainWise is relatively low: the program began in 2008 and as of July 2018 there 

were 1,525 participating households among roughly 60,000 eligible households. From 2015-2018, 

the last three years of our data, an average of 266 households per year have signed up. The 

average RainWise rebate covers 90% of the GSI installation costs. The average project costs slightly 

more than $5,100. However, the upfront costs are borne by the homeowner and the subsidies count 

as taxable income. The City and County were aware that these constraints, and the remaining out of 

pocket costs, might limit participation among low-income households. In response, a RainWise 

Access grant program was created to provide an additional $1,000 for low-income homeowners. 

RainWise provides a mix of public and private benefits. The primary public benefit in- tended 

to be delivered by the program is improved water quality through reduced peak  stormwater 
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runoff and subsequent reduction of CSOs. The private benefits are reduced nuisance flooding 

(e.g., basement flooding) and, if installing a cistern, access to free irrigation water for gardens. 

Figures A.2 and A.3 in the Appendix provide examples of raingardens and cisterns funded 

through RainWise as well as quotes from homeowners describing their motivations. It is likely 

that participants sign up for RainWise due to a mix of private and public benefits. Some 

participants mentioned the private benefits of subsidized land- scape renovation, while other 

participants described the importance of public water quality benefits. 

RainWise staff market the program in four ways. First, they send direct postcard mailings to 

eligible households. Second, they use social media ad campaigns as well as the continuous 

presence of agency-run social media and the 700 million gallon website. Third, they run 

workshops to promote the program. Finally, they staff booths at third-party events such as festivals. 

Upon reviewing outreach material obtained through a public records request, they appear to be 

targeted spatially (eligible basins) and opportunistically (festivals) rather than by demographics. In 

addition to formal outreach efforts some RainWise participants place RainWise signs in their 

front yards and there is anecdotal evidence that peer effects are an important determinant in 

participation. 

One exception to the targeted marketing is the active efforts to promote equitable access to 

RainWise though the City’s Racial Equity Toolkit (RET). The RET seeks to address, “challenges 

experienced by RainWise (RW) customers and contractors who are low-income, recent 

immigrants, and/or from communities of color.”10 Clearly RainWise managers are aware of a 

perception of unequal access and have active goals of making RainWise participation more equitable. 

The distributional effects of RainWise depend on the distribution of both the benefits and the 

costs of the program, which is funded by wastewater charges.  Even though all the areas eligible 

for the RainWise program are all within Seattle city limits, the program is jointly funded by 

Seattle Public Utilities and King County Wastewater Treatment Division (KCWTD). Because both 

generate their revenue from ratepayers, the costs of the programs for households in the respective 

service areas depend on the wastewater rates. KCWTD applies a fixed charge of $47.37 for each 

single family residence and charges multifamily, commercial, and industrial users $47.37 for each 

7.5 hundred cubic feet (HCF) of water. SPU’s sewer rates are $15.55 per HCF. Wastewater is 

estimated as the total metered water use net of any outdoor water use. It is equal to metered water 
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use during winter months (November-April) because SPU assumes there is no outdoor water use. 

During summer months it is equal to the average of the prior winter’s water use. According to  

SPU, the typical monthly bill for stormwater only in 2021 is $71.68.  Households with in- comes 

at 70% of the state median income or below are eligible for Utility Discount Program, which gives 

them a 50% credit on their bill. The City separately charges property owners a fee (levied on the 

annual property assessment) for stormwater management services based on each property’s 

estimated impact on the City’s drainage system, though this revenue  stream is separate from the 

one funding RainWise. In all, it is difficult to argue that the rate structure used by either 

jurisdiction to raise money for RainWise is progressive. KCWTD charges a fixed, non-

volumetric charge which is regressive. For SPU’s volume-based charge to be progressive, the 

city’s Utility Discount Program would need to have high uptake, or the income elasticity of water 

use would need to be highly elastic. A recent meta-analysis found the central estimate to quite 

inelastic (0.15 or lower) (Havranek et al., 2018), and we have no information on the percentage 

of eligible low-income households who use the Utility Discount Program. 

From the perspective of a water agency with mandated stormwater reduction targets, 

implementing GSI in the areas with the highest degree of impact in reducing CSOs is essential. 

In some cases, however, hydrologically important intervention areas may not spatially coincide 

with areas that would gain most from the co-benefits of urban greening. Prioritizing based on 

hydrology may also inadvertently target areas with higher-income households. There are other ways 

to develop rationales for siting GSI components (Hopkins et al., 2018; McPhillips and Matsler, 

2018). Heckert and Rosan (2016) suggest a Green Infrastructure Equity Index to prioritize 

investment locations. The dual challenges of equitably distributing urban greening and meeting 

stormwater goals raises the question of whether water agencies should be tasked with delivering 

urban greening to all. Jennings et al. (2017) discuss green space planning projects in cities that 

are directly targeted to support equity, without being linked to stormwater. 

Recent demographic and economic changes in Seattle, located in King County (WA), are 

important when considering the distributional impacts of GSI policy. King County, the twelfth most 

populous U.S. County, has seen explosive growth in recent years, with the population expanding by 

over 50% since 1990 compared to 32% for the U.S. overall. Our study area is wealthy, with a median 

income over $95,000 in 2018.   Since 2000 only New York City has experienced a larger increase 

in median income.11 
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3 Data 

 
We merge four data sources to generate our final datasets. Our GSI data include geo- referenced 

records on all public and private GSI installations in Seattle obtained by a Public Disclosure 

Request to the City of Seattle. Our focus is on the RainWise program, and we use the proximity 

to public and private mandatory GSI installations as explanatory variables in our model for 

RainWise participation. Parcel characteristics come from the King County Assessor’s Office for 

all residential parcels in King County. They were merged with arms-length residential housing 

sales from the King County Assessor’s Office. We collect demographic data at the Census block 

group level from the U.S. Census American Community Service using a weighted average of the 

five-year samples depending on the year of observation. The City of Seattle also maintains a 

geospatial data on tree canopy that we merge with all parcels in Seattle. We calculate the 

percentage of each Census block group covered by tree canopy. Since this dataset is developed by 

the City of Seattle it is not available outside of Seattle city limits. Most of the GSI records 

have a parcel identification number (PIN) that we use to merge with the Assessor data; the 

remainder were merged spatially.12 

We generate several variables for the analysis. First, we use sales data from the Assessor’s Office 

to predict housing prices for all homes as a proxy of household wealth. This includes properties not 

sold during our study period. We think this is a more transparent proxy for housing values than 

assessed values, another common proxy for house values.13 The prediction model regresses real 

housing sale prices on property characteristics, year- by-month fixed effects and fixed effects at the 

subarea level, the finest available spatial geometry. The prediction model results are presented in 

Table A.1 in the Appendix. We generate three spatial proximity variables that vary over time: the 

cumulative number of RainWise participants, private GSI installations, and public GSI installations 

within a one mile radius for each year of the sample. These spatial variables are calculated based on 

the cumulative counts at the start of the year to avoid contemporaneous factors that affect both 

household adoption and peer adoption. We also calculate two static proximity variables: the 

number of parks within a mile of a property and the percentage of each Census block    group 

covered by trees. 

We use two datasets for our empirical analysis. The first consists of a yearly panel of all residential 
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properties within the eligible areas. We use this data to model voluntary participation in the RainWise 

program. The second dataset uses all residential arms-lengths housing transactions both inside and 

outside RainWise eligible areas. We use this transaction dataset to estimate a hedonic selection 

model, focusing on transactions before RainWise GSI was installed to isolate the distributional 

effect from any capitalization of GSI into the value of the property. 

We begin by describing summary statistics on the first of two channels through which the 

private GSI program can have distributional impacts: the administrative choice of which areas are 

eligible. The panels of Figure 1 overlay the areas of Seattle that were determined to be eligible for the 

program by RainWise staff (shown with dark outlines) with Census block group level data on four 

key variables. The top panels show that eligible areas, particularly those in eastern Seattle near Lake 

Washington, are among the neighborhoods in Seattle with the highest home values and highest 

median incomes. There are, however, eligible areas that have lower incomes and home values, 

notably in south Seattle, where the percentage of non-white residents is higher (bottom-right panel). 

There is no discernible pattern between tree cover and RainWise eligibility (bottom left panel). 

The summary statistics for both datasets are in Table 1. The first three columns present sample 

means for properties in King County excluding Seattle, in the City of Seattle excluding the eligible 

area, and the eligible area. The last two columns present p-values from t-tests for equality of means 

for the RainWise-eligible areas compared to Seattle and King County (excluding Seattle), 

respectively.14 The t-tests were performed using the sample of households for the parcel 

characteristics from the King County Assessor, and we collapse the data to block groups to perform 

the t-tests for the ACS variables. Panel (a) of Table 1 shows the sample statistics for all the 

residential parcels and panel (b) only includes parcels that were sold during the sample period.15
 

Both samples show that homes are more expensive in Seattle compared to homes out- side of 

the Seattle city limits in King County. However, even within Seattle, homes are significantly more 

expensive in the RainWise eligible areas, though characteristics such as lot size, square footage 

and the age of the home also differ by area. This is likely because the eligible areas were 

determined based on hydrologic priority and are therefore close to major water bodies that households 

view as valuable recreational and visual amenities. The median income is higher in the eligible 

area compared to ineligible areas of Seattle. How- ever, the median income of King County outside 

of Seattle is slightly higher than the eligible area. There are no differences in tree cover between 
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Seattle and the eligible area. Census block groups in eligible areas have a lower percentage of non-

white residents and a higher percentage of residents with four-year college degrees than Seattle 

overall or King County (excluding Seattle). These summary data do not capture who in the eligible 

areas chooses to sign up for RainWise, but rather highlight the challenge in balancing 

environmental and equity goals when setting eligibility for voluntary environmental programs 

like RainWise. 

Next, we non-parametrically examine both eligibility and participation by wealth using deciles of 

housing values. Panel (a) of Figure 2 shows the share of households in each decile of home values 

that were eligible for the program. The housing value deciles were created using data from both King 

County and Seattle, since ratepayers in both jurisdictions fund the program. Across all ratepayers, 

12.5% of households were eligible for RainWise. The first three housing value deciles have a much 

lower share of eligible households at roughly 5%, whereas deciles 5-10 all have a higher share of 

eligible households. Panel (b)  of Figure 2 shows the participation rates conditional on eligibility in 

green (average=2.3% of eligible households participated). Among eligible households, the 

participation rate is roughly flat for the first seven housing value deciles, and then sharply 

declines for the most expensive properties. The figure also shows the overall participation rates within 

each housing value decile in tan (average=0.3% of all households in King County and Seattle 

participated). Since inexpensive homes are less likely to be eligible, the overall participation rate is 

highest for the middle income deciles. 

 
4 Methodology 

 
We examine the distributional effects of private, voluntary GSI policies. Drawing from the Mohai et 

al. (2009) review of the environmental justice literature with respect to both in- come and racial 

composition, we evaluate how participation in the RainWise program varies across three key 

variables: housing values, median income, and the percentage of non-white residents. Housing values 

are a proxy for wealth and a key advantage of housing values is the availability of property-level 

data. We use median income measured from the U.S. Census at the block group level. The percentage 

of non-white residents determines whether underrepresented minorities also benefit from increased 

green infrastructure through Rain- Wise.16 We explored using the percentage of Black residents as a 



12  

measure of racial representation and found no statistically-significant patterns. Only 5% of residents 

in King County are Black, however, whereas almost 30% of the population is non-white. Asian 

is the largest minority ethnic group at 15% and there are substantial numbers of non-native English 

speakers. RainWise has specifically targeted language as a barrier and developed marketing and 

outreach material in Spanish, Chinese, and Vietnamese. Lastly, we also con- sider neighbor variables 

to incorporate the role of peer effects in RainWise participation. We do not attempt to causally 

identify peer effects, but rather discuss how peer effects can amplify existing patterns of participation. 

We use two primary models to estimate the distributional effects of RainWise. Our first 

approach estimates the probability that a household will sign up for RainWise in a given year, 

using program data from 2010-2018. Our second model is a hedonic selection model that uses 

observed housing sales as the dependent variable and a variable indicating a property will sign up 

for RainWise in the future as the primary independent variable. The interpretation of the RainWise 

variable in the hedonic model is whether homes that eventually sign up for RainWise are more 

or less expensive than houses that do participate. Using sales prior to RainWise adoption ensures that 

we estimate a selection effect as opposed to a capitalization effect of RainWise. Each of the models, 

including the statistical techniques to estimate the models, are presented in the following 

subsections. 

 

4.1 Participation Model 
 
The participation model is formalized in equation 1. 

 

𝑅𝑊𝑖𝑡 = 𝛼 + 𝜃1 ln(𝐻𝑜𝑚𝑒𝑉𝑎𝑙𝑢𝑒𝑖𝑡) + 𝜃2 ln(𝑀𝑒𝑑𝐼𝑛𝑐𝑖𝑡) + 𝜃3𝑁𝑜𝑛𝑊ℎ𝑖𝑡𝑒𝑖𝑡 + 𝜷𝑿𝒊𝒕 + 𝜖𝑖𝑡  (1) 

In this model the dependent variable, RWit, is a dummy {0,1} if household i signs up for RainWise in 

year t. Our parameters of interest are θ1 − θ3, which are the coefficients on predicted home values, 

median income, and % non-white residents. We use the natural log of predicted home values and 

median income to fix the scale in percentage terms. We include additional explanatory variables in 

Xit such as housing characteristics, demographics at the block group level, neighbor GSI 

variables, and year fixed effects.17    The general interpretation of the model coefficients is the 

impact of a variable on the probability of a parcel signing up for RainWise in a given year. 

Because the dependent variable in our selection model, RWit, is binary and therefore not normally 

distributed, we use a logit model. We cluster our standard errors at the block group level. 
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4.2 Hedonic Selection Model 
 
A limitation of the participation model is the lack of property-level data on income or home price. As 

described above we estimate home values in a predictive model, which is not as accurate a proxy for 

household wealth as the actual sale price of the home. Therefore, we also estimate a model where 

we focus on homes sold during our study period. The tradeoff is a smaller sample that may not 

be representative: not all homes were sold during this time. Examining the two datasets in Table 

1 reveals some differences although the general magnitudes and differences between King County, 

Seattle, and the RainWise eligible areas are similar in the two samples. 

 
ln(𝑃𝑖𝑡) = 𝛼 + 𝛿1𝑅𝑊𝑝𝑟𝑒,𝑖𝑡 + 𝛿2𝑆𝑒𝑎𝑖 + 𝛿3𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑖 + 𝜖𝑖𝑡   (2) 

 

The dependent variable is the natural log of the real sales price (in January 2018 dollars), so the 

coefficients are interpreted as the marginal effect on home values in percentage terms. The primary 

variable of interest, RWpre,it, is a dummy equal to one if a house was sold prior to RainWise 

participation. This variable captures the types of homes that will eventually participate in RainWise. 

The Seai and Eligiblei variables are dummies indicating that the home was in the Seattle city 

limits and the eligible area, respectively. The hedonic model uses data from all of King County to 

evaluate how housing prices depend on both eligibility and adoption. In the hedonic model we do not 

include any controls or spatial fixed effects because we explicitly want the RainWise coefficient to 

capture selection effects. Excluding controls ensures that we capture whether homes that 

eventually sign up are in more desirable neighborhoods or have more bedrooms, bathrooms, or 

square footage. 
 

To clarify our hedonic selection model, consider a standard hedonic model that attempts to 

estimate the capitalization effect of RainWise. The standard hedonic model would replace δ1RWpre,it 

in equation 2 with δ˜
1 RWpost,it, where RWpost,it is an indicator for a home that sold after RainWise 

GSI was installed.  Typically δ˜
1 will capture two effects: the capitalization effect of GSI on 

home values and a selection effect if participation in RainWise is correlated with unobservables 

affecting housing values. By contrast, our parameter δ1 eliminates the capitalization effect because 

RWpre,it captures sales occurring before RainWise GSI is installed while retaining the selection 

effect. Therefore, the regression isolates how selection into RainWise affects property values. 
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5 Results 
 

5.1 Participation Model Results 
 
We begin with the results from the participation model. Again, all the participation models are run 

exclusively on properties located within eligible areas. We present the results of the average 

marginal effects from the logit regressions in graphical form in Figures 3 and 4. The full table of 

results for the logit regressions, along with the alternative models used for robustness, is available in 

the Appendix. 

We estimate two variations of the logistic regression. The first model presents the average 

marginal effect of the three key variables on participation, presented in panel (a) of Figure 3. Higher 

valued homes in eligible areas are less likely to participate, on average. The interpretation of the 

home value results is that a 100% increase in home value would decrease the annual participation rate 

by 0.1 percentage points. This is relative to an average annual participation rate of 0.25%. The 

median income of the Census block group i n  w h i c h  t h e  h o u s e  i s  l o c a t e d  does not have 

a meaningful impact on participation.18 Census block groups with a higher percentage of non-white 

residents have a lower probability of participating in RainWise. Changing a neighborhood from all 

white to all non-white would decrease the annual participation rate by almost 0.4 percentage points. 

 

We estimate a second logistic regression to examine the full distribution of the variables rather 

than focusing on their average effects. This is important for environmental justice considerations 

where the outcomes of the poorest or neighborhoods with high concentrations of minorities are 

critical. We replace the three key variables (home value, income, percent non-white) with indicators 

for deciles of each variables, with the fifth decile omitted. The decile cutoffs are based on data 

for all ratepayers though these estimation models 

only use data for properties located in RainWise-eligible areas. 

The results are presented in panel (b) of Figure 3. One can interpret these decile coefficients as 

the marginal effect on participation of being in that decile relative to the fifth decile. For example, 

panel (b) shows that homes within the highest two housing value deciles (blue) are significantly 

less likely to participate relative to the fifth decile. A house- hold in the highest home-value decile 

is 0.1 percentage points less likely to sign up in a given year than a home in the fifth decile. 

The pattern is noisier for median income; per- haps due to only having variation at the block group 
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level. All the coefficients for the percentage of non-white residents are negative, indicating that 

participation is highest in the omitted fifth decile. There is a monotonic decreasing pattern and 

Census block groups with the largest minority populations are least likely to participate. We note that 

since the fifth decile is omitted and all the coefficients are negative, that the fifth decile of non-

white had the highest participation rate.   The general pattern is the same if we omit the first decile 

instead of the fifth except for a positive and insignificant coefficient for the fifth decile. 

Other studies have found evidence that peer effects guide individual decisions for GSI adoption 

(Lim, 2018) as well as other environmental outcomes for residential homeowners (Bollinger and 

Gillingham, 2012; Bollinger et al., 2020). We present the results for the neighbor variables in Figure 

4. We focus on the counts within 1 mile of the property of four variables: RainWise installations, 

mandatory private GSI, public GSI installations, and parks. The variables are all standardized, so 

the interpretation is the effect of a one standard deviation change in the variable. The three GSI 

variables vary over time and are the cumulative counts in a given year. RainWise installations show 

strong positive peer effects: households who live in neighborhoods where more of their neighbors 

have adopted Rain- Wise are more likely to participate themselves. This may be due to a positive 

amenity value of RainWise installations, or a simple advertising effect: participants often put a yard 

sign provided by the utility next to their raingarden. 

We find negative peer effects, however, for mandatory private GSI installations. One reason 

may be that mandatory private GSI may consist of features that are not as attractive or functional 

as RainWise. Alternatively, since mandatory GSI is required for new construction or additions 

the regions of the city experiencing a building boom may be negatively correlated with RainWise 

adoption. We find no effect of proximity to public GSI or parks on RainWise participation. We 

do not interpret the peer effects as causal due to the reflection problem documented by Manski 

(1993). Therefore, we cannot distinguish if a RainWise installation truly causes an increase in their 

neighbors’ adoption probabilities, or if there are spatial unobserveables driving clusters of 

adoptions. Either way it is clear that neighborhood-level penetration is an important factor in 

RainWise participation. 

 

5.2 Robustness for participation model 
 

The panel nature of the dataset and time-varying neighborhood characteristics present a 
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complication.   Namely, we must make an assumption about how to treat the time periods after 

a household adopts RainWise. In a panel logit model, coding the dependent variable as one after 

adoption incorrectly allows factors that occur after adoption to affect predicted adoption. For 

example, suppose household A signed up in 2015 and their neighbor,  household B, signed up in 

2016. Clearly, household B’s adoption decision did not affect household A, since household A 

had already signed up. If we code our RainWise variable for household A as one after adoption 

(i.e., in 2015, 2016, and 2017) the model incorrectly allows household B’s adoption to affect 

household A’s probability of adoption. We drop the post-adoption observations from the sample 

– another option is coding them as zero - but neither approach is entirely correct. Instead, we 

supplement a panel logistic model with a time-varying survival model which accounts for the 

fact that households “drop out” of the sample after they participate in RainWise. Survival models 

are common in epidemiology to estimate the duration until death or the probability of survival. In 

our setting ‘death’ is represented by a household signing up for RainWise. We choose Aalen’s 

additive regression model (Aalen, 1989) that accommodates time-varying hazard rates since 

some of our variables change over time such as the number of neighbors that sign up for Rain- Wise. 

As further robustness checks we estimate a linear probability model (LPM) and a Cox proportional 

hazard model. 

We examine the impact of housing values and neighbors’ RainWise adoption from the results of 

the survival model by plotting the cumulative regression coefficients from Aalen’s model in Figure 

A.5.19 These curves plot the cumulative impact of a unit change of the variable (from its mean) on 

the RainWise adoption rate over time. Both the average effects and the decile effects are in the 

Aalen’s model are similar to the panel logit estimator. Additionally, the LPM and Cox models 

also produce similar estimates as shown in Table A.3. 

Our last robustness check relates to the inclusion of variables capturing peer effects. Even 

though we are not estimating causal effects in our model if the endogenous neighbor variables are 

correlated with the core distributional variables it may change their estimated parameters. As a 

robustness check we replicate the results presented in Figure 3 in a model that excludes the neighbor 

variables. The results, shown in Figure A.6 in the Appendix, are essentially the same. 

 

5.3 Hedonic Selection Model Results 
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The results for the hedonic selection model are presented in Table 2. Recall that the Rain- Wise 

variable identifies a home sold before the homeowner signs up for RainWise. The RainWise 

variable’s interpretation is the difference in housing prices for homes that sign up for RainWise 

relative to homes that do not sign up. The first three columns of Table 2 use all sales in King 

County. Column (1) does not include dummy variables for Seattle and the eligible area (Eligible). 

Therefore, the interpretation is the unconditional effect on selection that encompasses both 

eligibility and voluntary participation relative to all King County residents. Homes that in the 

future will sign up for RainWise are 3% less expensive than other homes in King County and the 

effect is not statistically significant.  The model in column (1) does not account for the fact that 

only certain homes are eligible, and that all eligible homes are in Seattle. Column (2) controls for 

whether the home is in the Seattle city limits, and the selection effect decreases to -15%. This is 

because homes in Seattle are more expensive than the average King County home. The joint effect 

of being in Seattle and participating in RainWise is a positive 2%. Next, when controlling for the 

eligible area and Seattle the selection effect decreases to -21%. Again, as shown in the non-

parametric analysis, homes in RainWise-eligible areas are more expensive than the average 

Seattle home. The joint effect of the being in Seattle, in an eligible area, and participation is 3.7%.  

The joint effects are calculated through linear combinations of the parameters, and neither linear 

combination is statistically different than zero. Finally, focusing only on the voluntary 

participation channel (model 4), we find the selection effect is -18%: among homes located in 

eligible neighborhoods, houses that will eventually adopt RainWise sell for 18% less. 

To investigate effects across the housing value distribution, we estimate quantile regressions for 

quantiles ranging from 0.05 to 0.95 in increments of 0.05 based on Firpo (2007). The quantile 

regressions only include the RainWise indicator and therefore have the interpretation of the 

difference in each house price quantile among the houses that will eventually sign up for RainWise 

compared to homes that never sign up. For example, the coefficient on the median represents the 

difference in the median home price for eventual RainWise participants and non-participants. We 

estimate the quantile regression on three different samples: King County, Seattle, and the eligible area 

(Eligible). The results are presented graphically in Figure 5 where the solid line is the point estimate, 

and the shaded area is the 95% confidence interval. 

In King County, lower quantiles (0.05-0.4) have positive coefficients, indicating that among 
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lower-valued homes RainWise participants reside in more expensive houses.  The King County 

results incorporate the strong eligibility effect: the lowest priced eligible homes are more 

expensive than many homes in King County. For example, the 10th percentile home is about 

10% more expensive for RainWise participants compared to non- participants. This indicates that 

within King County the least expensive homes are less likely to participate in RainWise. This 

effect turns negative around the median and is strongly negative for more expensive homes. The 

90th percentile is about 20% lower for participants than non-participants. The general downward 

trend across the housing price distributions indicates that the selection effects become stronger and 

more negative among more expensive housing value quantiles. The pattern is essentially replicated 

but shifted down for Seattle and the eligible area. RainWise homes are less expensive across the 

housing value distribution in Seattle and the eligible area, with the largest effect among the most 

expensive homes. The difference in the 90th percentile across RainWise participation status is 30% 

in Seattle and almost 40% in the eligible area. 

We find that homes that will eventually sign up for RainWise sell for significantly less than 

other eligible homes. One explanation is that property owners sign up for RainWise as part of 

larger renovation projects, and therefore we are simply capturing homes that are in poor condition. 

To investigate whether future RainWise homes are “fixer-uppers” or lower valued homes in good 

condition, we merged building permit data from King County Assessor to the sales data. We defined 

a RainWise renovation home as a transaction where a home was sold prior to RainWise 

installation, and the home had a building permit after the RainWise installation. Across King 

County 8% of transacted properties have a building permit associated with their parcel, compared to 

5% of RainWise homes that were sold. This argues against the notion that our RainWise variable is 

picking up homes in poor condition that sign up for RainWise as part of a larger construction project. 

 

5.4 Project costs 
 
We also examine whether the size of the project scales with the environmental justice variables. We 

regress the total cost of the project, and share of the project that was subsidized, on our home 

values, median income, tree canopy, and non-white. This model focuses on RainWise participants, 

and the sample consists of households that signed up for RainWise. 

The results are in Table A.2 in the Appendix. A one standard deviation increase in home 
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value increases the total cost of a RainWise project by approximately $200, or roughly 4%. Block 

groups with more non-white residents have more expensive projects. There is no discernible 

effect of any of these variables on the percentage of the project funded by Rain- Wise, although 

this might be due the fact that RainWise funded such a high percentage of most projects. 

Each RainWise project provides an estimate for the gallons of mitigated stormwater. We 

examine the relative cost effectiveness of RainWise dollars by dividing the gallons of mitigated by 

the cost of the project. More expensive homes on average have lower cost effectiveness; and most 

of the effects are concentrated in the most expensive homes. This provides suggestive evidence that 

landscaping in expensive RainWise homes may prioritize aesthetics over stormwater mitigation. 

Homes in block groups with more non-white residents also have projects with lower cost 

effectiveness. 

6 Conclusion 

 
Policymakers and the public are increasingly concerned about the distributional effects of 

environmental policy. While private benefits flow to homeowners who install subsidized GSI on 

private property, all ratepayers bear the cost of subsidies in order to achieve the public good of 

lowered CSOs and improved water quality. As a result, GSI subsidies are transfers from ratepayers 

to participating homeowners. Are these transfers a net subsidy to participants? Or are they being 

compensated for their willingness to accept a landscape feature that provides public stormwater 

benefits but zero or negative private benefits? Although it is possible that participating homeowners 

find Rain- Wise installations ugly or onerous to maintain, anecdotal evidence from the city suggests 

homeowners gain private benefits. Stated preference research from other settings has found that 

households perceive raingardens as a net positive and have a positive willingness-to- pay for them 

(Newburn and Alberini, 2016; Londoño Cadavid and Ando, 2013; Brent et al., 2017; Iftekhar et al., 

2021). Furthermore, given that the SPU and King County subsidize approximately 90% of the 

installation costs, the private benefits need not be large before the payment is net utility-improving 

subsidy to participants. Who gains private benefits by receiving direct subsidies? 

We decompose the distributional effects of the policy into impacts at the eligibility stage and the 

participation stage. We find that RainWise administrators selected eligible areas with more 

expensive homes than other Seattle homes, which are in turn more expensive than King County 

properties. We find that subsidies for GSI on private land primarily benefit upper middle-class 
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households when using home values as a proxy for wealth. The richest and poorest deciles are 

least likely to benefit directly by having a RainWise installation in their yard. Neighborhoods with 

a higher non-white population are also less likely to participate in RainWise. The lack of 

participation of the poorest households and non-white neighborhoods exists despite efforts by 

program managers to specifically target these groups through top-up subsidies and a Racial Equity 

Toolkit. 

As of late 2018, the total spending on RainWise projects was $7.6 million dollars. The program 

is believed to have reduced stormwater by an estimated 22 million gallons. While the investment 

is impressive, there is still significant additional stormwater retention necessary to achieve the goal 

of 700 million gallons. To date RainWise has accounted for roughly 10% of total gallons of 

stormwater reduced through GSI. If RainWise’s relative share of total GSI remains constant there 

will need to be more than a threefold increase in the current RainWise installations. As RainWise 

continues or expands, there are likely opportunities to incorporate consideration of the distributional 

costs and benefits. 

Our results prompt raise two important questions about how to incorporate environ- mental justice 

priorities into GSI policy. The first question regards the tradeoff between water quality 

improvements and equitable placement of GSI. While estimating the spatial heterogeneity of water 

quality benefits from distributed public and private GSI is beyond our research scope, Lim and 

Welty (2017) suggest only very extreme differences in GSI placements will meaningfully affect water 

quality. This opens the possibility of relaxing eligibility requirements to achieve more equitable 

access to urban greening. Another question reflects the external validity of our results. Our finding 

that, conditional on eligibility, high income households are less likely to participate depends on 

the initial set of eligible homes. If RainWise expands to less affluent areas, would we find the 

same pattern that relatively wealthy homes do not participate?  Generalizing outside of Seattle is 

also difficult since the demographics of prioritized areas from a water quality perspective may 

differ in other locations. Just because eligibility was concentrated among wealthy white areas in 

Seattle does not mean that the most impactful GSI placement in other cities would exclude 

marginalized communities. 

Finally, we find strong suggestive evidence of peer effects in the participation decision, consistent 

with other research for private incentives to adopt environmentally friendly land- scaping (Lim, 2018; 
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Brelsford and De Bacco, 2018; Bollinger et al., 2020). Peer effects create both challenges and 

opportunities for increasing participation in low-income neighbor- hoods. Low- and moderate-income 

residents are interested in participating in GSI programs (Mason et al., 2019), and targeted campaigns 

to reach these residents may have positive effects on uptake. If RainWise chooses to strategically 

expand eligible areas while implementing targeted campaigns, it may be possible to reduce or even 

eliminate distributional impacts. High-quality causal estimates of the magnitude of peer effect could 

help identify the critical mass of initial low-income participants necessary to achieve equity goals. 
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Tables 
 

Table 1: Summary statistics and difference in means 

(a) Summary statistics and difference in means for all properties 

Variable Mean KC Mean Seattle Mean RW Eligible T-KC T-SEA 

House Value 624321 637740 704639 0 0 

Med. Income 89454 78985 88810 0.793 0.001 

Non-White 0.314 0.319 0.287 0.122 0.054 

Tree Canopy  0.254 0.253  0.656 

Lot 28090 6180 5190 0 0 

Sq.ft. 2198 1833 1859 0 0 

Year Built 1977 1953 1944 0 0 

Degree 0.427 0.6 0.661 0 0 

Observations 508684 156236 63806   

 

(b) Summary statistics and difference in means for properties sold (2010-2018) 

Variable Mean KC Mean Seattle Mean RW Eligible T-KC T-SEA 

House Price 624693 663593 758955 0 0 

Med. Income 102177 89342 100541 0.461 0 

Non-White 0.353 0.362 0.31 0 0 

Tree Canopy  0.262 0.256  0.382 

Lot 18762 5190 4470 0 0 

Sq.ft. 2361 1856 1910 0 0 

Year Built 1984 1964 1955 0 0 

Degree 0.485 0.662 0.752 0 0 

Observations 184189 56206 22414   

Note: The sample in panel (a) includes all residential properties in King County. Housing values in panel (a) are 

based on 2018 dollars and reflect the predicted values based on a regression model. The sample in panel (b) shows 

data for all arms-length residential property sales in King County from 2010-2018. Housing sales in panel (b) are 

the sale price in 2018 dollars. Year Built, Lot and Sq.ft. are based on the King County Assessor and are measured 

at the property level. Black, Med.  Income, and Degree are from the ACS and measured at the block group level. 

Degree is the percentage of the Census block group with a college degree or higher. Tree Canopy is measured at 

the neighborhood level and is only available within the City of Seattle; King County data are intentionally blank. 

T-KC and T-SEA show the p-values for t-tests of difference in means for the RainWise eligible sample and the 

rest of King County and Seattle, respectively. The t-tests account for the unit of observation (block group or 

property). 
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Table 2: Pre-adoption hedonic selection model 

 King 

County 

King 

County 

King 

County 

Eligible 

 (1) (2) (3) (4) 

RainWise −0.032 −0.151∗∗∗ −0.213∗∗∗ −0.181∗∗∗ 

 (0.062) (0.047) (0.050) (0.057) 

Seattle  0.173∗∗ 0.124∗  

  (0.068) (0.067)  

Eligible   0.126∗∗  

   (0.054)  

Observations 180,334 180,334 180,334 21,890 

R2 0.072 0.097 0.102 0.132 

Adjusted R2 0.071 0.097 0.101 0.127 

Notes: The dependent variable is log of home price in 2018 dollars. Robust standard errors are 

clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figures 

 
Figure 1: Map of RainWise eligibility and combined sewer overflow locations 

 

 
Note: The map shows average for four key variables by Census block group: median home 

value, median income, percent Black and percent tree cover. The boundaries of the RainWise 

eligible areas funded by King County are shown in Black and those funded by SPU are shown 

in gray. 
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Figure 2: Eligibility and participation by housing value deciles 

(a) Eligibility shares 
 

(b) Participation rates 

 

Note: The vertical axis in panel (a) measures the share of eligible homes within each housing value 

decile. The deciles are created using predicted housing values for all ratepayers in King County. If 

eligibility were evenly distributed across the county each decile would contain 12.5% eligible 

homes. Panel (b) shows the participation rates for both eligible households and the overall 

participation rate by housing value decile. The participation rate for all ratepayers within each decile 

is calculated by multiplying the participation rate for eligible house- holds by the eligibility share. 

The labels on top of each bar show the mean home price within each decile in thousands of 

dollars. 



 

Figure 3: Marginal effects of environmental justice variables on RainWise participation 

(a) Average effects 

 

(b) Effects by decile 

 

Notes: These plots show the marginal effects on key variables on RainWise participation from a 

logit regression. The solid bars are the coefficient estimates and the error bars represent 95% 

confidence intervals from standard errors clustered at the block group level. The vertical axis 

represents the change in the probability of participating in RainWise for a unit change in the 

variable. The full table of results for the logit regressions is available in Table A.3. 
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Figure 4: Neighbor and neighborhood impacts on RainWise participation 

 

Notes: These plots show the marginal effects on key variables on RainWise participation from a 

logit regression. The solid bars are the coefficient estimates and the error bars rep- resent 95% 

confidence intervals from standard errors clustered at the block group level. The vertical axis 

represents the change in the probability of participating in RainWise for a unit change in the 

variable. The horizontal axis shows key neighbor and neighbor- hood variables: the number of 

neighbors within 1 mile that signed up for RainWise (# RainWise), the number of neighbors within 

1 mile that installed private GSI due to new construction or additions ($ Private GSI), the number 

of public GSI installations within 1 mile (Public GSI), and the number of parks within 1 mile. 

The full table of results for the  logit regressions is available in Table A.3. 
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Figure 5: Quantile regressions selection effects 

 

Notes: The figure graphs the coefficients and 95% confidence intervals from quantile regressions of 

the log of real house prices on future RainWise participation for different samples. The 

interpretation of the coefficient is the difference in logged house price quantile among future 

participants and non-participants. The coefficient for the 0.5th quantile is difference in the median 

house price among future RainWise participants and houses that will not participate in 

percentage terms (approximately). The regressions control for year fixed effects but no other 

covariates. The quantiles range from 0.05 to 0.95 in increments of 0.05. 
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Notes 

1Beginning in the 1930s and continuing through the 1970s, the Home Owners’ Loan Corporation categorized the 

desirability of neighborhoods for loans and investment using race. Their least desirable category was outlined on maps 

in red and often had higher concentrations of Black residents. 
2GSI was formalized as a method of managing CSOs in 2019 with the Water Infrastructure Improvement 

Act, which requires the Environmental Protection Agency (EPA) to promote the use of GSI (H.R.7279). 
3See the EPA’s work and definition of environmental justice at https://www.epa.gov/environmentaljustice. 
4More information on the program is available at https://www.700milliongallons.org/. 
5The  summary  of  the  consent  decree  is  available  at  https://www.epa.gov/enforcement/seattle-washington-and-king-county 
6This program is formalized in the Stormwater Code and run by the Seattle Department Construction and Inspections.   

 The  details  of  the  regulations  are  available  at http://www.seattle.gov/sdci/codes/codes-we-enforce-(a-z) 

/stormwater-code. More details on the King County requirements are available at https://kingcounty.gov/ 

~/media/depts/permitting-environmental-review/dper/documents/forms/Residential-Drainage-Review-Requirements. ashx 
7Seattle is within King County so even though all eligible RainWise basins are in Seattle, King County and 

SPU share the responsibility of funding and operating RainWise since runoff reductions will count towards each 

utility’s consent decree. 
8As part of a public records request we asked for any formal decision criteria for how eligible basins were 

selected, and none were provided. 
9See the raingarden eligibility requirements at https://700milliongallons.org/wp-content/uploads/ 2020/08/What-

determines-rain-garden-eligibility.pdf. 
10The documentation for the RET was made available through a public records requests and is available from 

the authors. 
11Data are available at https://www.kingcounty.gov/independent/forecasting/King%20County%20Economic% 

20Indicators/Household%20Income.aspx. 
12In general RainWise data have PINs, but public GSI and mandatory private GSI have spatial coordinates 

but no PIN. We dropped 15 RainWise observations that we were unable to merge either spatially or with 

administrative records. 
13Assessed values can be affected by petitions, are updated at different times, and do not disclose the method- 

ology. 
14Tree canopy data is not available in King County outside of Seattle. 
15Although we only use eligible properties in the participation model we show the summary statistics for a l l  three 

samples to better understand distributional implications of eligibility.  All eligible properties are in Seattle, but the 

program is partly funded by property owners in King County outside of the Seattle city limits. 
16The correlation of these variables is shown in Figure A.4 in the Appendix. 
17The neighbor GSI variables are the number of RainWise installations, mandatory private GSI, public GSI, and 

parks within 1 mile from parcel i at year t. 
18We use the natural log transformation for both home values and median income in the participation models. 
19To conserve space only the primary distributional variables are presented in Figure A.5, but we include all 

variables presented in Table A.3 in the Aalen’s regression model. 

https://www.epa.gov/environmentaljustice
https://www.700milliongallons.org/
https://www.epa.gov/enforcement/seattle-washington-and-king-county-washington-settlement
http://www.seattle.gov/sdci/codes/codes-we-enforce-(a-z)/stormwater-code
http://www.seattle.gov/sdci/codes/codes-we-enforce-(a-z)/stormwater-code
https://kingcounty.gov/~/media/depts/permitting-environmental-review/dper/documents/forms/Residential-Drainage-Review-Requirements.ashx
https://kingcounty.gov/~/media/depts/permitting-environmental-review/dper/documents/forms/Residential-Drainage-Review-Requirements.ashx
https://kingcounty.gov/~/media/depts/permitting-environmental-review/dper/documents/forms/Residential-Drainage-Review-Requirements.ashx
https://700milliongallons.org/wp-content/uploads/2020/08/What-determines-rain-garden-eligibility.pdf
https://700milliongallons.org/wp-content/uploads/2020/08/What-determines-rain-garden-eligibility.pdf
https://700milliongallons.org/wp-content/uploads/2020/08/What-determines-rain-garden-eligibility.pdf
https://www.kingcounty.gov/independent/forecasting/King%20County%20Economic%20Indicators/Household%20Income.aspx
https://www.kingcounty.gov/independent/forecasting/King%20County%20Economic%20Indicators/Household%20Income.aspx
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Figure A.1: RainWise eligibility and CSO locations

(a) Ever Eligible (b) Elgible in 2018

Notes: The map shows eligible areas and CSO outfall locations by funding agency. Panel (a) shows all
basins that were ever eligible for RainWise including two basins funded by King County that were eventu-
ally closed. Panel (b) shows the eligible areas as of 2018. The basins’ colors designate which utility funds
and operates RainWise. The CSO outfall locations are shown with green circles.
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Figure A.2: RainWise raingarden examples

Notes: The examples are screenshots from case studies and reproduced with
permission. The specific links are below and were accessed on May 6, 2021. More examples are available
at .
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Figure A.3: RainWise cistern examples

Notes: The examples are screenshots from case studies and reproduced with
permission. The specific links are below and were accessed on May 6, 2021. More examples are available
at .
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Figure A.4: Correlation between distributional variables
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Figure A.5: Hazard rates for RainWise

(a) Average effects

(b) Effects by decile

Notes: The figure presents the cumulative regression coefficients for Aalen’s additive regression model
over time. The vertical axis represents the hazard rates, which in our case is the probability of adopting
RainWise. The solid lines are the cumulative regression coefficient, which shows the effect of a unit change
in the variable on the hazard rate at any point in time. The shaded area is the 95% confidence interval.
Panel (a) shows the marginal effects of the variable of three key environmental justice variables: the log of
predicted home values (Home Value), the log of median income (Income), and the percentage of a block
group’s residents that are non-white (% Non-White). Panel (b) presents shows the deciles of these same
variables where the rows represent different deciles. Each cell in panel (b) represents one time-varying
parameter estimate. The years are relative to the start of the program so year zero represents 2010.
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Figure A.6: Marginal effects of environmental justice variables on RainWise participa-
tion without neighbor variables

(a) Average effects

(b) Effects by decile

Notes: These plots show the marginal effects on key variables on RainWise participation from a logit
regression without the neighbor variables. The solid bars are the coefficient estimates and the error bars
represent 95% confidence intervals from standard errors clustered at the block group level. The vertical
axis represents the change in the probability of participating in RainWise for a unit change in the variable.
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Table A.1: Housing value prediction model results

King County King County King County

(1) (2) (3)

Sq. Ft. 207.655⇤⇤⇤ 214.061⇤⇤⇤ 159.572⇤⇤⇤
(1.440) (1.359) (1.417)

Lot �0.019⇤⇤⇤ �0.024⇤⇤⇤ 0.002
(0.005) (0.005) (0.005)

Beds �43,887.140⇤⇤⇤ �48,307.850⇤⇤⇤ �20,715.050⇤⇤⇤
(1,117.165) (1,054.220) (1,031.203)

Baths 38,616.930⇤⇤⇤ 43,868.760⇤⇤⇤ 8,931.012⇤⇤⇤
(1,804.357) (1,702.585) (1,647.080)

Year Built �150,477.900⇤⇤⇤ �61,001.780⇤⇤⇤ 16.346
(3,722.378) (3,576.261) (4,032.156)

Age of Home Sq. 38.089⇤⇤⇤ 15.125⇤⇤⇤ �0.003
(0.950) (0.913) (1.027)

Year Renovate �2,134.287⇤⇤⇤ �1,302.063⇤⇤⇤ �183.305
(253.115) (238.882) (227.340)

Year Renovate Sq., 1.075⇤⇤⇤ 0.653⇤⇤⇤ 0.089
(0.127) (0.120) (0.114)

Improvements 9.792⇤⇤⇤ 8.744⇤⇤⇤ 8.654⇤⇤⇤
(0.236) (0.222) (0.249)

Condition Yes Yes Yes
Traffic Yes Yes Yes
Rainier Yes Yes Yes
Olympics Yes Yes Yes
Cascades Yes Yes Yes
Lake Washington Yes Yes Yes
Skyline Yes Yes Yes
Waterfront Yes Yes Yes

Observations 538,814 538,814 538,814
R2 0.177 0.269 0.345
Adjusted R2 0.177 0.268 0.344

Notes: The results are from a linear regression where the dependent variable is the real sale price in 2018
dollars. The Column (1) has no spatial or time fixed effects, column (2) adds year-month fixed effects,
and column (3) adds year-month and sub area fixed effects. Sub areas is the finest spatial geography for
neighborhoods maintained by the King County Assessor. All regressions include dummies for condition
of the structure, proximity to traffic, waterfront access, and different mountain, skyline, or water views.
⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A.2: Cost and rebate model results

Average Effects Quantiles
Total Percent Gallon/Dollar Total Percent Gallon/Dollar

ln( ˆPrice) 926.93⇤⇤ 0.00 �1.19⇤⇤⇤
(353.90) (0.02) (0.15)

ln(Med. Inc.) �337.51 0.01 0.31⇤⇤
(274.40) (0.01) (0.12)

% Non-White 506.28⇤⇤⇤ 0.00 �0.23⇤⇤⇤
(94.24) (0.00) (0.04)

Project Cost �0.09⇤⇤⇤ 0.11⇤⇤ �0.09⇤⇤⇤ 0.11⇤⇤
(0.00) (0.04) (0.00) (0.04)

Price Q1 �223.34 0.03 0.24
(328.98) (0.01) (0.14)

Price Q2 �67.35 0.03⇤ 0.26⇤
(271.85) (0.01) (0.12)

Price Q4 198.80 0.01 �0.21⇤
(211.43) (0.01) (0.09)

Price Q5 622.40⇤ 0.02 �0.56⇤⇤⇤
(295.66) (0.01) (0.13)

Income Q1 144.08 0.03⇤ 0.26
(336.05) (0.01) (0.14)

Income Q2 43.48 0.02 �0.01
(227.15) (0.01) (0.10)

Income Q4 �248.50 0.02 0.00
(244.14) (0.01) (0.10)

Income Q5 �397.57 0.02 �0.12
(342.29) (0.02) (0.15)

% Non-White Q1 �182.52 0.00 0.18
(261.36) (0.01) (0.11)

% Non-White Q2 �29.36 �0.01 �0.01
(272.99) (0.01) (0.12)

% Non-White Q4 709.64⇤ �0.04⇤⇤ �0.67⇤⇤⇤
(321.62) (0.01) (0.14)

% Non-White Q5 1208.61⇤⇤⇤ �0.01 �0.68⇤⇤⇤
(355.39) (0.02) (0.15)

Num. obs. 1472 1468 1468 1472 1468 1468
⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05

Notes: The table shows results from a linear regression where the dependent variable is a either the total project cost
(Total) or the percentage of the cost that was subsidized(Percent). A fully subsided project will have the dependent
variable in the percentage regression equal to one. The average effects variables are all standardized. The sample
only includes homes that signed up for RainWise and had valid cost data. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A.3: Participation model results

Average Effects Deciles
LPM Logit Cox LPM Logit Cox

ln( ˆPrice) �0.00200⇤⇤ �0.00122⇤⇤ �0.77951⇤⇤⇤
(0.00068) (0.00046) (0.17000)

ln(Med. Inc.) 0.00010 0.00027 0.17375
(0.00066) (0.00048) (0.12781)

% Non-White �0.00598⇤⇤⇤ �0.00348⇤⇤⇤ �2.25448⇤⇤⇤
(0.00176) (0.00102) (0.22091)

# RainWise 0.00170⇤⇤⇤ 0.00054⇤⇤⇤ 0.36662⇤⇤⇤ 0.00175⇤⇤⇤ 0.00048⇤⇤ 0.36245⇤⇤⇤
(0.00035) (0.00016) (0.03595) (0.00036) (0.00015) (0.03796)

# Private GSI �0.00199⇤⇤⇤ �0.00080⇤⇤ �0.51638⇤⇤⇤ �0.00222⇤⇤⇤ �0.00091⇤⇤⇤ �0.65327⇤⇤⇤
(0.00052) (0.00028) (0.06240) (0.00055) (0.00028) (0.06593)

# Public GSI 0.00007 0.00004 0.02457 �0.00003 �0.00002 �0.01662
(0.00010) (0.00006) (0.03010) (0.00013) (0.00008) (0.03255)

# Parks 0.00007 �0.00022 �0.13865⇤⇤⇤ 0.00016 �0.00007 �0.05061
(0.00012) (0.00011) (0.04201) (0.00015) (0.00010) (0.04441)

Price Q1 �0.00056 �0.00040 �0.32377⇤
(0.00070) (0.00030) (0.16066)

Price Q2 �0.00003 �0.00012 �0.08842
(0.00077) (0.00037) (0.15309)

Price Q3 0.00029 0.00008 0.06407
(0.00068) (0.00035) (0.14244)

Price Q4 0.00004 �0.00001 �0.00681
(0.00036) (0.00015) (0.11131)

Price Q6 0.00034 0.00017 0.12082
(0.00032) (0.00015) (0.09306)

Price Q7 0.00006 0.00004 0.03225
(0.00032) (0.00015) (0.09997)

Price Q8 �0.00051 �0.00021 �0.15847
(0.00037) (0.00018) (0.11485)

Price Q9 �0.00093⇤ �0.00042⇤ �0.33915⇤
(0.00044) (0.00021) (0.13972)

Price Q10 �0.00184⇤⇤⇤ �0.00105⇤⇤⇤ �1.05986⇤⇤⇤
(0.00053) (0.00021) (0.20615)

Income Q1 �0.00077 �0.00048 �0.41215⇤
(0.00114) (0.00044) (0.16980)

Income Q2 0.00016 0.00019 0.13380
(0.00070) (0.00049) (0.15875)

Income Q3 0.00008 0.00023 0.15694
(0.00059) (0.00034) (0.12911)

Income Q4 0.00032 0.00044 0.28818⇤⇤
(0.00068) (0.00044) (0.10535)

Income Q6 �0.00067 �0.00024 �0.18623
(0.00074) (0.00030) (0.11191)

Income Q7 0.00076 0.00058 0.35861⇤⇤
(0.00086) (0.00043) (0.11127)

Income Q8 �0.00078 �0.00022 �0.16818
(0.00059) (0.00026) (0.12479)

Income Q9 �0.00024 �0.00008 �0.06047
(0.00070) (0.00028) (0.14189)

Income Q10 �0.00072 �0.00062⇤ �0.55633⇤
(0.00073) (0.00030) (0.23931)

% Non-White Q1 �0.00129 �0.00052 �0.44349⇤⇤⇤
(0.00149) (0.00046) (0.11512)

% Non-White Q2 �0.00145 �0.00056 �0.48336⇤⇤⇤
(0.00144) (0.00044) (0.11283)

% Non-White Q3 �0.00205 �0.00081⇤ �0.74890⇤⇤⇤
(0.00135) (0.00034) (0.11980)

% Non-White Q4 �0.00170 �0.00077 �0.67818⇤⇤⇤
(0.00140) (0.00042) (0.11172)

% Non-White Q6 �0.00203 �0.00084⇤ �0.85517⇤⇤⇤
(0.00168) (0.00042) (0.15255)

% Non-White Q7 �0.00171 �0.00093 �0.99250⇤⇤⇤
(0.00189) (0.00048) (0.16481)

% Non-White Q8 �0.00273 �0.00112⇤⇤ �1.36103⇤⇤⇤
(0.00226) (0.00041) (0.18071)

% Non-White Q9 �0.00382 �0.00120⇤⇤⇤ �1.68482⇤⇤⇤
(0.00212) (0.00024) (0.22282)

% Non-White Q10 �0.00590⇤ �0.00161⇤⇤⇤ �2.34048⇤⇤⇤
(0.00257) (0.00031) (0.18834)

Num. obs. 568024 568024 563835 568087 568087 563898
⇤⇤⇤p < 0.001; ⇤⇤p < 0.01; ⇤p < 0.05

Notes: The results are from a linear probability model regression where the dependent variable is a dummy equal to one if
a household participated in RainWise in a given year. Robust standard errors are clustered at the block group level. ⇤p<0.1;
⇤⇤p<0.05; ⇤⇤⇤p<0.01 10
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