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Abstract

Traffic congestion is a growing problem in urbanizing economies that results in lost time, health
problems from pollution, and contributes to the accumulation of greenhouse gas emissions. We
examine a new external cost of traffic by estimating the relationship between traffic congestion
and emergency response times. Matching traffic data at a fine spatial and temporal scale to
incident report data from fire departments in California allows us to assign traffic immediately
preceding an emergency. Our results show that traffic slows down fire trucks arriving at the
scene of an emergency and increases the average monetary damages from fires. The effects are
highly nonlinear; increases in response time are primarily due to traffic in the right tail of the
traffic distribution. We document an additional externality of traffic congestion and highlight
the negative effect of traffic on a critical public good.

JEL Classification: R41, R42, R48, H41, Q50
Keywords : Traffic, Public Goods, Externalities, Emergency Response Times
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1 Introduction

According to the National Emergency Number Association, over 240 million 911 calls are

placed every year in the United-States.1 Rapidly responding to emergency calls requires

an efficient network of first responders and dispatchers. The literature shows that response

times for emergency medical services (EMS) are critical for a number of health outcomes

including hospitalization, rehabilitation and survival following an accident, stroke or heart

attack (Wilde, 2013; Emberson et al., 2014; Jena et al., 2017). Police response times have also

been shown to affect crime clearance rates (Blanes i Vidal and Kirchmaier (2015)). Although

first responders are typically expeditious, one factor beyond their control that affects response

times is traffic. This is a particularly pressing concern as increasing urbanization has led to

more severe congestion in many cities.

In this paper, we examine the relationship between traffic and emergency response times

by fire departments in California. In addition to responding to fires, we also have data on fire

departments providing EMS and responding to other non-fire emergencies. We match traffic

data at a fine spatial and temporal scale to incident report data from fire departments. The

fire data consist of over 2.7 million incidents from 2008-2015 across California collected by

the National Fire Incident Reporting System (NFIRS). The traffic data, collected from the

California Department of Transportation, consists of roughly 21 billion observations from

25,000 stations at a five-minute interval resolution. The fine spatial and temporal scale of

the traffic data allows us to merge traffic conditions immediately preceding the emergency

event by zip code, date, and the time of day. We assign zip code level traffic conditions

for every call to the fire department immediately prior to the fire department receiving the

alarm. Our identifying assumption is that traffic in a given zip code, in a given month, on

a given day of the week, within a given hour is uncorrelated with unobservables affecting

emergency response times. This is plausibly exogenous since we use the traffic before the

fire/accident occurs. Our final dataset, consists of 1.3 million incidents merged with zip code

level traffic conditions.

We make three main contributions to the literature. First, we investigate a new external-

1For more details, see https://www.nena.org/?page=911Statistics
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ity of traffic by showing how traffic congestion affects an important public good; the ability

of first responders to quickly arrive on the scene of emergencies. While the costs of traffic

due to lost time and other externalities are well-documented, we believe it is important to

focus on the effect of traffic on emergency response vehicles for two primary reasons. First,

conventional economic measures of the time cost of traffic use value of time (VOT), which is

often elicited from private drivers paying to increase speed (Small et al., 2005; Wolff, 2014;

Gross and Brent, 2018). However, this ignores emergency response vehicles who do not pay

tolls and likely have a vastly higher VOT than private drivers. Second, while conventional

drivers are bound by the rules of the road, emergency response vehicles can force drivers to

move out of the way, go through traffic lights, and use the road shoulders to avoid traffic.

Therefore, it is uncertain whether traffic will slow down emergency response vehicles in the

same manner as conventional drivers.

Our second contribution documents how a variety of policies affect both response times

and the marginal effect of traffic on response times. This contributes to the growing litera-

ture evaluating the effectiveness of transportation policies on congestion and non-congestion

traffic externalities such as pollution (Adler and van Ommeren, 2016; Beaudoin and Lin

Lawell, 2018; Blackman et al., 2018; Hamilton and Wichman, 2018; Yang et al., 2018; Lalive

et al., 2018; Li et al., 2019). Lastly, our third contribution estimates the economic damage

imposed by slower response times due to traffic congestion. While most of the economic

research on fires focuses on damages from wildfires (Donovan et al., 2007; Moeltner et al.,

2013; Mueller et al., 2018; McCoy and Walsh, 2018), our work represents some of the first

research on the economic damage of urban fires.

Our results show that traffic slows down fire trucks arriving at the scene of an emergency.

This applies both to fire departments responding to fires and providing emergency medical

services. Increasing the response time of first responders represents a newly documented

externality to traffic, in addition to lost time, pollution, house prices, health, happiness and

crime (e.g. Kahneman et al. (2004); Currie and Walker (2011); Anderson (2019), Knittel

et al. (2016); Ossokina and Verweij (2015); Anderson et al. (2016) and Beland and Brent

(2018)). The effects are highly nonlinear; increases in response times are primarily due to

traffic in the right tail of the traffic distribution. For this reason, our main specification
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focuses on traffic above the 80th percentile. We also find suggestive evidence that fire

departments are able to adapt to high traffic, and that unexpected traffic has a larger effect

on response times.

Additionally, we investigate road congestion policies (high-occupancy vehicle lanes (HOV),

toll roads, public transportation) that might mitigate this problem. We find that HOV lanes

partially mitigate the marginal effects of traffic on response time. Lastly, we show evidence

that traffic congestion increases the monetary damages of fires. In aggregate, the increased

monetary damages from fires and emergency medical services due to traffic are approximately

$95-$285 million per year in California, with the majority of costs coming from slower EMS

response times. The costs from longer emergency response times are several orders of mag-

nitude lower than other traffic externalities such the value of lost time and extra fuel, which

were estimated to be over $40 billion in Californian in 2017 (Schrank et al., 2019). These

costs do not account for increased response times for ambulances or police, and therefore

should be considered a lower bound for the costs of traffic on emergency response services.

Additionally, we do not capture adapting expenditures by fire departments to cope with

traffic congestion. Our results are robust to multiple specifications and robustness tests in-

cluding metro-by-date fixed effects, different definitions of our traffic variable, and relaxing

the temporal assumptions for assigning traffic to an emergency.

Our results highlight the importance of an efficient network of first responders, and the

complementarity of certain types of public goods (Albouy et al., 2020). Since rapid response

by first responders is critical, simply using the value of time, reliability and health effects

from pollution will underestimate the costs of traffic congestion. The results also highlight

the nonlinear impacts of traffic; similar to other research (Gross and Brent, 2018; Beland

and Brent, 2018) the adverse impacts on response times are concentrated in the right tail of

the traffic distribution. As urbanization shifts higher shares of the population to cities, it is

important to understand the benefits of policies that reduce traffic congestion.

The rest of the paper is organized as follows: Section 2 discusses the related literature;

Section 3 provides a description of the data and presents descriptive statistics; Section 4

presents the empirical strategy; Section 5 is devoted to the main results, heterogeneity of the

impacts and a series of robustness checks; and Section 6 concludes with policy implications.
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2 Related literature

Our paper is related to the literature on traffic externalities, the importance of emergency

response times, and road congestion policies. This article first fits into a broad literature

investigating negative externalities to traffic. One of the largest externalities is the value

of time and fuel expenditures associated with congestion, which is estimated to cost U.S.

commuters $179 billion in 2017 (Schrank et al. (2019)). Another important external cost of

traffic documented in the literature is the effect of traffic on air quality and the subsequent

health impacts. Currie and Walker (2011) show that traffic reductions due to the introduction

of electronic toll collection, (E-ZPass) reduce vehicle emissions near highway toll plazas,

which subsequently reduces premature births and low birth weight among mothers near a toll

plaza. Pollution from traffic negatively affects children’s contemporaneous health (Knittel

et al., 2016) and has a long run effect on mortality within the elderly population (Anderson,

2019).

While the primary costs of traffic are mostly due to lost time and reliability, there is

research using survey data linking traffic to negative mental health outcomes, including

stress and aggression (Parkinson, 2001; Hennessy and Wiesenthal, 1999; Gee and Takeuchi,

2004; Gottholmseder et al., 2009; Roberts et al., 2011; Künn-Nelen, 2016; Anderson et al.,

2016). Moreover, Beland and Brent (2018) find that extreme traffic events lead to an increase

in domestic violence in Los Angeles. There are several papers that investigate the role of

traffic congestion in private decisions related to driving behavior (Burger and Kaffine, 2009;

Couture et al., 2018). Ossokina and Verweij (2015) exploit a quasi-experiment that reduces

traffic congestion on certain streets in the Netherlands and find that the decrease in traffic

leads to an increase in housing prices. We contribute to the literature on the externalities

of traffic by studying the negative effect of congestion on first responders’ response times as

an additional external cost of traffic.

This paper is also related to the literature on the importance of emergency response

times. There are several medical papers that examine the effect of response times on health

outcomes. The general consensus is that slower response times increase mortality for cardiac

arrest (Larsen et al., 1993; Pell et al., 2001; Newgard et al., 2010). However, recent papers
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show that the lack of an association between response times and general trauma mortality

may be due to endogeneity: first responders devote more resources (e.g. faster response

times) to more severe trauma events that have higher mortality rates. Wilde (2013) uses

distance from the hospital as an instrument to investigate the impact of response time on

mortality and hospital utilization. The instrumental variable approach shows that increased

emergency response times significantly increase mortality and the likelihood of being ad-

mitted to the hospital, while the OLS approach finds no effect. Jena et al. (2017) exploits

marathons as a natural experiment that increases response times to investigate the effect on

cardiac arrest outcomes. They find that patients who were admitted to marathon-affected

hospitals with acute myocardial infarction or cardiac arrest had longer ambulance transport

times before noon (4.4 minutes longer) and higher 30-day mortality than patients who were

hospitalized on other days. The effect of response times is not limited to medical outcomes,

as Blanes i Vidal and Kirchmaier (2015) show that police response times affect crime clear-

ance rates. They find suggestive evidence in support of two mechanisms: a faster response

time increases the likelihood of an immediate arrest and the likelihood that a suspect will

be named by a victim or witness. We contribute to the literature by highlighting how traffic

is an important input to emergency response times for fire departments using data at a fine

spatial and temporal scale. Additionally, we contribute to the methodology of understanding

the impact of response times on outcomes. Using time series variation in traffic as opposed

to cross sectional variation in distance to hospitals (Wilde, 2013) relies on less stringent

identification assumptions. Unlike Jena et al. (2017), we examine all extreme traffic, not

just traffic from major events such as marathons.

Our paper is also related to the literature on road congestion policies that aim to reduce

traffic externalities. According to Duranton and Turner (2011), building new road capacity is

unlikely to reduce congestion in the long-run since the elasticity of travel demand with respect

to capacity is roughly equal to one. Other research analyzes policies such as dynamic tolling

(De Borger and Proost, 2013; Gross and Brent, 2018), road pricing (Gibson and Carnovale,

2015), HOV and HOT lanes (Konishi and Mun, 2010; Bento et al., 2014, 2013) and public

transportation (Anderson, 2014; Adler and van Ommeren, 2016; Bauernschuster et al., 2017;

Gendron-Carrier et al., 2018). Several studies find that increasing access to public transit
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reduces congestion and the pollution from driving in both Europe and China (Adler and

van Ommeren, 2016; Beaudoin and Lin Lawell, 2018; Lalive et al., 2018; Yang et al., 2018;

Li et al., 2019). The literature finds that these policies affect driving behaviors, decrease

travel time, reduce congestion, and curtail pollution. We contribute to this literature by

investigating if theses policies impact the marginal effect of traffic on first responders.

3 Data sources, dataset creations & descriptive statistics

We collect data from several sources to construct our final estimation sample. The fire

department incident data are collated from fire departments by the National Fire Incident

Reporting System (NFIRS). NFIRS represents a uniform reporting standard for fire depart-

ments and emergency medical services (EMS), and represents the world’s largest national

database on fire incident reporting. The Federal Emergency Management Agency (FEMA)

administers the NFIRS database. This database contains roughly 40 million incidents nation-

wide from 2008-2015. We focus on California due to the availability of high resolution traffic

data; there are approximately 2.7 million incidents from 2008-2015 in California. There are

eleven modules that contain detailed data on different elements of fire incidents. We use

the basic module that includes data on the time the alarm was raised and the time the fire

department arrived at the scene of the emergency. Our primary outcome variable is the

response time in minutes, which is calculated by the arrival time minus the time the alarm

was raised.

We focus on three types of calls: fires, emergency medical services, and other hazards.

We exclude other types of incidents that do not require rapid arrival on the scene such

as being locked out of a residence or animal control. Fire departments also report the

dollar value of property and contents damaged due to the fire. We exclude all incidents

coded as wildfires because these incidents likely have different dynamics for response times

and monetary damages relative to most fires occurring in urban areas. We also remove

all incidents that are coded as a response to a vehicle accident because the response times

for these incidents may be correlated with traffic.2 Lastly, we drop 546 incidents that had

2The fact that we use traffic before the incident occurs alleviates this concern, but traffic congestion increases the
probability of accidents and also generates more traffic. Therefore, to be conservative we drop these incidents.
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response times above five hours as these are likely data errors or not typical of traditional

operations.

The traffic data are obtained from the California Department of Transportation through

the Caltrans Performance Measurement System (PeMS).3 We access annual Station 5-minute

datasets from 2008 to 2015 for approximately 25,000 monitoring stations over California.

There are over 840,000 five-minute intervals for each of the 25,000 stations representing ap-

proximately 21 billion observations of traffic data. Since the fire incident data are geocoded

at the zip code level, we aggregate the traffic data to the zip code level. We match the traffic

and incident data at the location where the incident occurs because we do not have geospa-

tial data on the origin of the emergency response vehicles. Emergency vehicles ultimately

must cope with the traffic at the incident zip code, so we believe this is a valid modeling

strategy. Additionally, in the Los Angeles County where we have geospatial data on fire

station locations most zip codes have at least one fire station, so it is likely that the origin

location is relatively close to the incident location.4

We create our traffic delay variable in four steps. First, we calculate the free-flow speeds

in miles per hour (mph) for each monitoring station using speeds from midnight to 2 AM.5

Second, for each monitoring station we calculate the difference from the actual speed in

a given 5-minute interval and the free-flow speed. Third, we generate monitoring station

weights to account for the utilization of that monitoring station relative to other stations in

that zip code. These weights are based on the sum of traffic occupancy for a given monitoring

station divided by the sum of occupancy across all monitoring stations in the zip code. We

re-calculate the weights each month to account for changing utilization patterns over time.

Fourth, using the weights and the speed deviations we generate a weighted average of all

monitoring stations in a zip code for each 5-minute interval. We refer to this variable as

traffic delay. Section A of the Appendix provides formal descriptions of these steps. We

also generate an unweighted version of this variable which calculates a simple average of all

3The data can be accessed via http://pems.dot.ca.gov/ A free account needs to be established.
4While we have geospatial data on fire stations locations we do not know the origin location of emergency vehicles

at the incident level.
5We assume that traffic in the middle of the night approximates free flow although speeds may be faster during

other times depending on the zip code.
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deviations in a zip code without the weights. The average delay across all times and zip

codes is 5.4 mph, 7.2 mph during the morning commute, and 9.9 mph during the evening

commute. The interpretation of this delay variable is that the average speeds for zip codes in

our sample is 5.4 mph slower than free-flow speeds that occur from midnight to 2 AM. Table

1 presents the mean and standard deviation of response time and traffic delay for the full

sample, each core based statistical area (CBSA), all urban areas combined, and non-urban

areas. Response time is measured in minutes and delay is measured in miles per hour. Table

1 shows that traffic delay is small in non-urban areas, but the response time is slightly larger.

Table 1: Summary statistics of traffic and response times

Variable Sample Mean Std. Dev

Delay All 5.4 8.5
Delay Urban 6.0 8.9
Delay Non-urban 2.6 4.9
Delay Los Angeles 6.9 10.0
Delay Bay Area 5.9 8.9
Delay San Diego 5.1 8.1
Delay Sacramento 4.9 6.9
Response All 6.2 5.5
Response Urban 6.1 5.2
Response Non-urban 6.8 6.3
Response Los Angeles 6.5 5.2
Response Bay Area 5.8 4.5
Response San Diego 6.4 4.6
Response Sacramento 5.1 6.2

Notes: The table presents mean and standard deviations for response times and traffic delays for several relevant
sub-samples. Response time is measured in minutes and delay is measured in miles per hour. The Non-urban sample
is the same as the Other CBSA - incidents that occur outside of one the primary metropolitan areas.

Monitoring stations only exist in a subset of zip codes so our final traffic dataset is

comprised of a panel of over 570 million observations of 5-minute intervals from 725 zip

codes over eight years.6 The monitoring stations are primarily on major roads in urban

areas, although some non-urban areas are included. While the sample is not necessarily

representative in this respect, we do capture the urban areas where traffic is most likely to

be a major challenge for fire departments. Figure 1 presents a map of the study location

and the roads considered.7

6The average monitoring stations per zip code in our sample is 41. The minimum is 1 and the maximum is 215.
7We contacted the fire departments to find out if traffic represented a challenge and whether they used the

roads contained in the PemS data. Both the Los Angeles and San Francisco fire departments responded that traffic
represented a challenge, that they use freeways, and that spillover traffic from freeways impacted response times.
These correspondence are available upon request.
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Figure 1: Study location

Notes: The figure plots the study location. The points represent traffic monitoring stations, the
black outlines are zip codes and the shaded areas are core based statistical areas.
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Since we are concerned with nonlinear effects of traffic congestion we calculate deciles of

traffic delay from our traffic panel dataset. Our primary specification uses deciles created

from all observations of traffic delay in the dataset (absolute deciles). We also calculate zip

code-specific (or relative) deciles based on the time series variation within a zip code. The

tenth decile using the aggregate approach represents the 10% worst traffic over all zip codes

and all times. Whereas, the tenth decile in the relative approach represents the 10% worst

traffic that a specific zip code faced. The absolute deciles assume that delay above a certain

threshold (roughly 20 mph) has the same effect in different zip codes. The relative deciles

specification assumes that deviations from traditional traffic patterns in a given location is

the relevant traffic measure. We believe both are valid metrics of how traffic impacts fire

deparments. The two decile specifications are highly correlated, and the results are quite

similar using either specification. We provide more detail on the construction of the deciles

in Section B of the Appendix.

In order to merge the traffic data to the fire incident data, we assign the most recent

five-minute traffic data prior to the alarm being raised. This ensures that the incident did

not cause the traffic. We have the exact minute that the alarm was raised, but five-minute

intervals for the traffic data. Therefore, the traffic interval will begin 6-10 minutes prior to

the alarm being raised.8 We also explore other temporal assignments of traffic including up

to 60 minutes of traffic and a 10 minute buffer prior to the alarm time. We merge both the

traffic delays and the deciles from the panel dataset. Creating the traffic deciles from the

full traffic panel prior to merging ensures the traffic deciles are representative of all traffic

conditions as opposed to traffic when incidents happen to occur. Since incidents are more

likely to occur when traffic is worse (people are awake and moving around) each decile in

our merged dataset does not occur with 10% probability (see Table A.1 in the Appendix).

The unit of observation in our dataset is an individual incident and therefore out dataset is

not a panel dataset. There are many time periods when no incidents occur in any zip codes

and there can be multiple incidents in a zip code during the same time period.

We merge several additional data sets in order to investigate potential policies to mitigate

the negative impact of traffic on first responders response times. In order to assess the

8For example, if the alarm was raised any time between 1:31-1:35 we assign traffic from 1:25-1:30 to that incident.
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effect of transportation policies, we use geocoded locations of high-occupancy vehicle lanes

(HOV), high-occupancy toll lanes (HOT), and rail stations from the California Department of

Transportation. Lastly, we also use the 2010-2014 American Community Survey (ACS) from

the Census Bureau to obtain aggregate zip code level characteristics to analyze heterogeneity

by demographics. The final dataset contains 1.3 million observations of fire incidents merged

with traffic conditions.9

Figure 2 shows a histogram of the time it takes for the fire department to arrive on the

scene after they receive the alarm (in minutes). The vertical line shows that the average

response time the average response time is 6.2 minutes. Table A.2 presents the average and

standard deviation in traffic delay by city for all deciles, the 9th decile, and the 10th decile

of delay. The 9th decile represents roughly a 9 mph delay and the average delay in the 10th

decile ranges from 20-26 mph depending on the city.

Table A.3 presents the average and standard deviation of delay for each decile for the

whole sample. Higher deciles not only have larger average delays but also more variation

as shown by the standard deviation within each decile. Figure 3 displays the average traffic

delay in mph across all zip codes by time of day. Consistent with most urban areas, Figure

3 shows notable peak traffic in the morning and afternoon.

Traffic in California is a severe issue in several major cites. For example, Los Angeles is

a candidate for the worst traffic in the United-States and in the world; six of the country’s

10 most congested stretches of highway are in the Los Angeles metropolitan area. Drivers

in Los Angeles spent 102 hours a year sitting in traffic during peak hours in 2017.10 San

Francisco also has severe traffic congestion with the third worst traffic in the United-States

behind Los Angeles and New York. The typical driver in the San Francisco area spends an

average of 79 hours a year in congestion. The situation is also problematic in other cities in

California such as San Diego (48 hours a year in congestion and ranked 13th worst cities in

the U.S.) and Sacramento (25 hours a year in congestion). We replicate Figure 3 for each

major metropolitan area as well as zip codes not in a major metro area in Figure 4. The

9We remove response times that are over 5 hours as these are either data errors or not representative of typical
operations.

10See the INRIX Traffic Scoreboard, available at: http://inrix.com/scorecard/.
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Figure 2: Response time

Notes: The figure plots the number of minutes it takes for the fire department to arrive on the scene
after they receive the alarm (Response Time) on the horizontal axis. Data are from the NFIRS
from 2008-2014.
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Figure 3: Traffic delay by time of day

Notes: The solid line plots the average delay in miles per hour (MPH) by time of day and the shaded
bands are plus and minus one standard deviation. Data are from the California Department of
Transportation Performance Measurement System (PeMS) from 2008-2014.

Bay Area (which includes San Francisco, Oakland, Berkeley, and San Jose) and Los Angeles

have the worst traffic followed by San Diego and Sacramento. Zip codes outside of major

metro areas (Other) do not typically experience severe delays.

4 Methodology

To quantify the impact of traffic on response time and damages, we estimate the following

equation:

Yizt = β0 +
K∑
k

βkDecilek,zt−1 + βZ + βMY + βD + βH + εizt (1)
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Figure 4: Traffic delay by time of day across metro areas

Notes: The solid line plots the average delay in miles per hour (MPH) by time of day for each core
based statistical area (CBSA) and the shaded bands are plus and minus one standard deviation.
Data are from the California Department of Transportation Performance Measurement System
(PeMS).
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where Yizt is the outcome of interest in for incident i in zip code z at time t; our unit of time

is a five-minute interval. Our main outcomes of interest are responses time (in minutes) and

the natural log of the dollar value of damages from fires. Response time is the time elapsed

from when the alarm is sounded until the fire department arrived on the scene in minutes.

Our traffic variable is the deviation from free-flow in miles per hours during the five minutes

immediately preceding the fire alarm. Decilek,zt−1 is an indicator for the kth decile of traffic

delay in zip code z in the five-minute interval immediately preceding time t.11 We use zip

code level fixed effects (βZ) to control for static spatial unobserved effects. To control for

time-varying unobservables, we include year-by-month (βMY ), day-of-week (βD), and hour

of day (βH) fixed effects. Our identifying assumption is that lagged deviations from average

traffic in a given zip code, in a given month, on a given day of the week, at a given hour are

uncorrelated with response times except through the mechanism of traffic. We posit that

traffic congestion is plausibly exogenous because we use traffic before the fire/incident occurs.

Our main specification uses cluster-robust standard errors at the zip code level. To better

understand the relationship between traffic and response time, we investigate heterogeneous

effects along several dimensions: time of day, individual cities and zip code characteristics

including average traffic. We also look at several alternative traffic specifications, including

different traffic conditions before the alarm is received and alternative definitions of traffic

delays. Finally, we analyze policies that can potentially mitigate the results and investigate

how these policies affect response times.

5 Results

5.1 Nonlinearities and main results

First, we document nonlinearities in the effect of traffic congestion on response times. Our

dependent variable is the response time in minutes, and we specify the regression using

decile indicator variables for lagged traffic delay, where the first decile is omitted to avoid

perfect multicollinearity. Since our variable represents deviation from free-flow the first

decile represents times where traffic is essentially nonexistent, and all of the coefficients on

11In our specification, the deciles range from 2 to 10, where 10 is the worst traffic and 1 is the omitted decile. We
omit the first decile so that coefficients on the deciles can be interpreted as relative to the minimum possible traffic.
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the included deciles are relative to the omitted first decile. Figure 5 plots the coefficients and

95% confidence intervals for traffic decile indicators and shows that the impact on response

times is concentrated in the two highest deciles (9th and 10th). Traffic in the 10th decile

increases response times by about 0.22 minutes, or roughly 3.5% of the average response

time. This is consistent with other research that finds that traffic variability and right tail

events, in addition to average congestion, generate significant costs (Beland and Brent, 2018;

Gross and Brent, 2018). Given this evidence for highly nonlinear effects, we focus on the 9th

and 10th decile of traffic for the remainder of the paper. The green bars in Figure 5 only

include the 9th and 10th deciles in the regressions; the coefficients are quite similar and we

use this parsimonious specification focusing on the right tail of traffic in most of the results.

Figure 6 shows the regression results for decile indicators after isolating the sample for each

metropolitan area. In all the major metropolitan areas, traffic in the right tail generates

most of the increase in response times.

Table 2 presents the primary results of the impact of traffic in the 9th and 10th deciles

on response times. The dependent variable is the number of minutes it takes for the fire

department to arrive on the scene after they receive the alarm. Column (1) presents results

for all observations (fires, all EMS, and all emergency calls) and shows that traffic in the 9th

and 10th deciles leads to a significant increase in response times. Columns (2) and (3) present

results for fires and EMS calls, respectively and show that traffic increases response times for

both fires and EMS calls. The sample for the regression presented in column (4) represents

all incidents where rapid response times are critical and is our primary specification for

all future regressions except where noted. The sample presented in column (4) includes

fires, EMS calls, and incidents where the fire department is dispatched to address incidents

involving overpressure rupture, explosion, overheating or hazardous conditions without fires.

Column (4) is our preferred specification because it includes all incidents that require a

rapid response, and we will refer to this model as our base model. Once again, traffic in the

9th and 10th deciles significantly increase response times.12 Our preferred specification in

12There are more zip codes than fire departments so we prefer using zip code fixed effects in our main specifications.
However, some zip codes are served by more than one fire department and there may be unobserved fire department
specific effects. Table A.4 in the Appendix presents results using fire departments fixed effects and results are
qualitatively the same.
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Figure 5: The effect of deciles of traffic on response time

Notes: The figure plots the coefficient for indicators variables for deciles of traffic congestion from
a regression where the dependent variable is response time (in minutes). The first decile is omitted
to prevent perfect multicollinearity. The regression includes zip code, year-by-month, day-of-week,
and hour-of-day fixed effects. The blue bars represent coefficients for estimating equation (1),
while the green bars use only the 9th and 10th deciles. The 95% error bars are generated from
cluster-robust standard errors at the zip code level.
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Figure 6: The effect of deciles of traffic on response time by metro area

Notes: The figure plots the coefficient for indicators variables for deciles of traffic congestion from
regressions where the dependent variable is response time (in minutes). The results are from
separate regressions for each core based statistical area (CBSA). Other refers to all zip codes not
in one of the major CBSAs listed. The first decile is omitted to prevent perfect multicollinearity.
The regressions includes zip code, year-by-month, day-of-week, and hour-of-day fixed effects. The
95% error bars are generated from cluster-robust standard errors at the zip code level.
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column (4) shows that the increase in response time is 0.135 minutes for the 9th decile and

0.191 minutes for the 10th decile, equating respectively to a roughly 2.2% and 3.1% increase

in response times.

Table 2: The effect of traffic on response time
(1) (2) (3) (4)

All Observations Fires EMS Emergency Calls

Traffic D9 0.140∗∗∗ 0.146∗∗ 0.0859∗∗∗ 0.135∗∗∗

(0.0225) (0.0661) (0.0157) (0.0231)
Traffic D10 0.196∗∗∗ 0.173∗∗∗ 0.131∗∗∗ 0.191∗∗∗

(0.0256) (0.0626) (0.0186) (0.0263)

Zip Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 1,230,652 248,631 652,743 1,027,770
Zip Codes 721 709 602 720

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene
after they receive the alarm (Response Time). Traffic Di refers to the ith decile of deviations from free-flow. The
columns denote subsets of the data for incidents representing fires, all emergency medical services (EMS), and all
emergency calls. Emergency calls includes fires, EMS calls as well as incidents where the fire department is dispatched
to address incidents involving over-pressure rupture, explosion, overheating or hazardous conditions without fires.
Cluster-robust standard errors at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5.2 Heterogeneous effects

We examine heterogeneous impacts for different times of day, locations, and traffic conditions.

As shown in Figure 3, traffic congestion varies significantly over the course of the day, so

Table 3 displays regressions for the different times of the day. Column (1) presents our

base results. Columns (2) and (3) focus on alarms initiated in Peak and Off-Peak hours,

respectively. Columns (4) and (5) focus exclusively on morning and evening peak periods.

Column (6) interacts the traffic deciles with indicators for morning (AM) and evening (PM)

peak periods. Peak refers to alarms initiated in the peak morning (6:00-7:59 AM) and

evening (4:00-6:59 PM) commutes, while Off-Peak refers to all other times. Traffic increases

response times during all times of the day with the magnitudes highest during the morning

peak period. However, the difference across time of day are not significantly different, as

shown in column (6).

To examine whether zip codes with different traffic profiles experience different marginal

effects, we also run regressions for different subsets of the sample based on zip code level
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Table 3: Heterogeneity in traffic on response time by time of day
(1) (2) (3) (4) (5) (6)

Base Peak Off-Peak AM Peak PM Peak Interaction

Traffic D9 0.135∗∗∗ 0.173∗∗∗ 0.112∗∗∗ 0.203∗∗∗ 0.147∗∗∗ 0.104∗∗∗

(0.0231) (0.0374) (0.0282) (0.0765) (0.0414) (0.0279)
Traffic D10 0.191∗∗∗ 0.199∗∗∗ 0.212∗∗∗ 0.331∗∗∗ 0.146∗∗∗ 0.206∗∗∗

(0.0263) (0.0363) (0.0428) (0.0761) (0.0415) (0.0402)
Traffic D9*AM 0.0688

(0.0702)
Traffic D10*AM 0.0487

(0.0577)
Traffic D9*PM 0.0682

(0.0424)
Traffic D10*PM -0.0419

(0.0423)

Zip Code FEs Yes Yes Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes Yes Yes
Observations 1,027,770 332,176 695,572 97,248 234,901 1,027,770
Zip Codes 720 695 714 650 687 720

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time) for all emergency calls. Traffic Di refers to the ith decile of deviations from
free-flow. The columns examine different subsets of the sample by time of day. Peak focuses on alarms initiated
in the peak congestion (6:00-7:59AM and 4:00-6:59PM), while Off-Peak is all other times The AM and PM Peak
columns restrict the sample to morning (6:00-7:59AM) and evening (4:00-6:59PM) respectively. Column (6) interacts
the traffic deciles with indicators for morning (AM) and evening (PM) peak periods. Cluster-robust standard errors
at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

traffic conditions. Table 4 reports regression results that divide the sample by zip codes’

mean and standard deviation of traffic. Column (1) presents the base effects and columns

(2) and (3) restrict the sample to zip codes with average delays above and below the sample

median, respectively. Columns (4) and (5) present regressions that restrict the sample to

zip codes with standard deviation of delays above and below the sample median. Column

(6) interacts the traffic deciles with indicator variables for above the median average traffic

and above the median standard deviation of traffic.13 Table 4 shows that in all four samples,

traffic significantly increases response times. The effects are quite consistent across zip codes

with different traffic profiles. Column (6) shows that the effect of traffic on response time

are smaller (significant at the 10 percent level) for zip codes with higher average traffic. One

interpretation is that fire departments adapt to high traffic by investing more resources in

locations with high traffic.14 We also present graphical evidence of the full distribution of

13It should be noted that most zip codes with high traffic also have a high standard deviation of traffic.
14There is anecdotal evidence of new stations opening to deal with emergencies that occur during rush hour - see

https://www.kpbs.org/news/2017/mar/08/study-growing-traffic-increases-fire-department-re/.
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effects in high vs. low traffic zip codes in Figure A.1 in the Appendix.

Table 4: Heterogeneity in traffic on response time by traffic conditions
(1) (2) (3) (4) (5) (6)

Base High Avg. Low Avg. High SD Low SD Interaction

Traffic D9 0.135∗∗∗ 0.0658∗∗∗ 0.182∗∗∗ 0.0983∗∗∗ 0.157∗∗∗ 0.177∗∗∗

(0.0231) (0.0230) (0.0449) (0.0239) (0.0427) (0.0475)
Traffic D10 0.191∗∗∗ 0.114∗∗∗ 0.307∗∗∗ 0.121∗∗∗ 0.336∗∗∗ 0.336∗∗∗

(0.0263) (0.0274) (0.0678) (0.0249) (0.0737) (0.0762)
Traffic D9*Hi Avg. -0.120∗

(0.0688)
Traffic D10*Hi Avg. -0.0434

(0.0937)
Traffic D9*Hi SD 0.0514

(0.0646)
Traffic D10*Hi SD -0.145

(0.0993)

Zip Code FEs Yes Yes Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes Yes Yes
Observations 1,027,770 519,549 508,221 529,079 498,691 1,027,770
Zip Codes 720 381 339 386 334 720

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time) for all emergency calls. Traffic Di refers to the ith decile of deviations from
free-flow. The columns examine different subsets based on zip code level traffic conditions. The High and Low Traffic
columns restrict the sample to zip codes with average delays above and below the sample median. The High and Low
Std. Dev. columns restrict the sample to zip codes with standard deviation of delays above and below the sample
median. Column (6) interacts the traffic deciles with indicators for high average and standard deviation traffic zip
codes. Cluster-robust standard errors at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Next, we explore the role of expected vs unexpected traffic. We estimate moving average

models to predict traffic and then calculate deciles from both the predicted values and

the residuals that we use as regressors, which we refer to as Expected and Unexpected,

respectively. The moving average regressions include all fixed effects as our base specification

along with recent traffic. The columns show different specifications for predicting our primary

independent variable: zip code level traffic prior to a fire alarm. The rationale behind

using different moving average predictions is to proxy for the (unknown) prediction model

that fire departments use when dispatching vehicles to an emergency given the observable

characteristics of the emergency.15 Columns (1) and (2) present moving average models using

the traffic observations for the most recent week and month, respectively, using the traffic

during the exact same hour of the day. Columns (3) and (4) present a similar specification

15First Stage shows the coefficient on the moving average variable in the first stage regression - a perfect prediction
will have a value of one. Both the residuals and predicted values are standardized. We present in the Appendix the
details of how the different moving average are calculated.
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for traffic in the last week or month but expand the temporal period used to predict traffic

to all hours during the same peak period (AM, PM, or Off-Peak). The results in Table

5 are substantially larger for unexpected extreme traffic, which suggests habituation and

adaptation by first responders to traffic conditions. When fire departments expect high

traffic they can still respond quickly but are delayed by unexpected traffic. Section C of the

Appendix describes the moving average model in more detail.

Table 5: Heterogeneity in traffic on response time by traffic expectations
Hour Peak

(1) (2) (3) (4)
Week Month Week Month

Expected D9 0.0366 0.0300 -0.0170 0.0128
(0.0260) (0.0262) (0.0264) (0.0255)

Expected D10 0.00254 -0.0139 -0.0326 -0.0208
(0.0313) (0.0343) (0.0323) (0.0322)

Unexpected D9 0.0788∗∗∗ 0.0710∗∗∗ 0.0771∗∗∗ 0.0675∗∗∗

(0.0213) (0.0219) (0.0222) (0.0216)
Unexpected D10 0.158∗∗∗ 0.143∗∗∗ 0.185∗∗∗ 0.171∗∗∗

(0.0221) (0.0231) (0.0301) (0.0283)

First Stage .89 .96 .75 .58

Zip Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 1,027,770 1,027,770 1,027,770 1,027,770
Zip Codes 720 720 720 720

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time) for all emergency calls. Residual and Prediction refer to the residuals and
predicted values from a moving average regression with all fixed effects and recent delays. The columns show different
specifications for the month average; either the previous week or month and using the same our or same peak period
(AM, PM or Off-Peak). First Stage shows the coefficient on the moving average variable in the first stage regression -
a perfect prediction will have a value of one. Both the residuals and predicted values are standardized. Cluster-robust
standard errors at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.5 investigates the effect of traffic on response time by zip code characteristics.

Column (1) presents our base specification. Columns (2) and (3) present the results for

high and low income areas, respectively, and columns (4) and (5) present results for high

and low non-white areas, respectively. Column (6) interacts indicators for high income and

high non-white zip codes with traffic deciles. High income refers to zip codes above the

sample median for median household income and high non-white refer to zip codes that are
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above the sample median for the percentage of people that are not white. Table A.5 shows

that traffic significantly increases response times in all areas, and there are no statistically

significant differences across zip codes with different demographic characteristics.

5.3 Robustness

In order to test whether alternative confounding effects are driving the results, we investigate

the robustness of the results to different levels of fixed effects, clustering, and specifications

of the traffic variable. Our first set of robustness results, presented in Table 6 shows a variety

of different sets of fixed effects and clusters for the standard errors. Column (1) replicates the

base effect, column (2) replaces year-by-month fixed effects with date fixed effects, column

(3) replaces year-by-month fixed effects with metro-by-date fixed effects,16 and column (4)

interacts all temporal fixed effects (year-by-month, hour-of-day, and day-of-week) with zip

code fixed effects. Columns (5) and (6) replicate the most conservative specification presented

in column (4) but employ two way clustering for zip code and year-by-month and zip code

and hour-of-day, respectively. Table 6 shows that the results are robust to all the alternative

specifications and the coefficients are very similar across all columns.

There are more zip codes than fire departments so we prefer using zip code fixed effects in

our main specifications. However, some zip codes are served by more than one fire department

and there may be unobserved fire department specific effects. Therefore, we also replicate

these specifications using both zip code and fire department fixed effects as well as including

fire departments as an additional cluster in the standard errors. The results are essentially

unchanged and are reported in Table A.6 in the Appendix.

Our main specification uses deciles generated from all observations in the traffic panel. In

Table 7, we calculate deciles based on the time series variation within a zip code. The relative

definition may better reflect the differences in infrastructure and typical traffic patterns in a

given location. The results are qualitatively the same. Tables A.7 and A.8 in the Appendix

replicate Table 2 and 5 using the relative measure of traffic and the results are essentially

unchanged. We also show the effect for all deciles using the absolute and relative measures

16Metro-by-date fixed effects generate a different fixed effect for every date in every metropolitan area, including
the ”Other” designation.
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Table 6: Robustness to different specifications

(1) (2) (3) (4) (5) (6)
Base Date Metro*Date Zip*All Zip*All Zip*All

Traffic D9 0.135∗∗∗ 0.110∗∗∗ 0.0958∗∗∗ 0.113∗∗∗ 0.113∗∗∗ 0.113∗∗∗

(0.0231) (0.0230) (0.0218) (0.0211) (0.0264) (0.0195)
Traffic D10 0.191∗∗∗ 0.162∗∗∗ 0.149∗∗∗ 0.164∗∗∗ 0.164∗∗∗ 0.164∗∗∗

(0.0263) (0.0251) (0.0237) (0.0236) (0.0334) (0.0291)

Zip Code FEs Yes Yes Yes No No No
Year*Month FEs Yes No No No No No
Day-of-week FEs Yes Yes Yes No No No
Hour-of-day FEs Yes Yes Yes No No No
Date FEs No Yes No No No No
Metro*Date FEs No No Yes No No No
Zip*Year*Month FEs No No No Yes Yes Yes
Zip*Day-of-week FEs No No No Yes Yes Yes
Zip*Hour-of-day No No No Yes Yes Yes
SE Cluster Zip Zip Zip Zip Zip & Month Zip & Hour
Observations 1,027,770 1,027,764 1,027,659 1,021,476 1,021,476 1,021,476
Zip Codes 720 720 720 635 635 635

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene
after they receive the alarm (Response Time) for all emergency calls. Traffic Di refers to the ith decile of deviations
from free-flow. The columns examine different levels of fixed effects and two way clustering of the standard errors.
Cluster-robust standard errors at the level described in the bottom panel are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01

in Figure A.2 in the Appendix. Table A.9 present results without weighting by station

occupency and the results are qualitatively the same.

In Table A.10, we also regress the average delay (instead of using deciles) on response

times for all the specifications presented in Table 6. Our traffic variables is the standardized

average delay, so the interpretation of the coefficients is the change in response times for

a one standard deviation increase in traffic delay. The effect of average traffic on response

times is positive and significant in all specifications, which shows there are average effects

even though they are highly nonlinear.

Next, we investigate different temporal specifications of the traffic variable. Our primary

specification uses traffic in the previous five minutes using a five minutes lag from when

the alarm was raised. Table 8 presents different traffic specifications to estimate the impact

of traffic on response times. The first five columns use a five-minute lag before the alarm

but expand the historical window of traffic used to generate the congestion variable. The

last three columns use a ten minute lag before the alarm was raised and various times to
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Table 7: Robustness to different specifications - zip code-specific deciles

(1) (2) (3) (4) (5) (6)
Base Date Metro*Date Zip*All Zip*All Zip*All

Traffic D9 0.0863∗∗∗ 0.0674∗∗∗ 0.0559∗∗∗ 0.0727∗∗∗ 0.0727∗∗∗ 0.0727∗∗∗

(0.0227) (0.0222) (0.0208) (0.0186) (0.0204) (0.0215)
Traffic D10 0.176∗∗∗ 0.144∗∗∗ 0.125∗∗∗ 0.160∗∗∗ 0.160∗∗∗ 0.160∗∗∗

(0.0267) (0.0255) (0.0249) (0.0222) (0.0293) (0.0289)

Zip Code FEs Yes Yes Yes No No No
Year*Month FEs Yes No No No No No
Day-of-week FEs Yes Yes Yes No No No
Hour-of-day FEs Yes Yes Yes No No No
Date FEs No Yes No No No No
Metro*Date FEs No No Yes No No No
Zip*Year*Month FEs No No No Yes Yes Yes
Zip*Day-of-week FEs No No No Yes Yes Yes
Zip*Hour-of-day No No No Yes Yes Yes
SE Cluster Zip Zip Zip Zip Zip & Month Zip & Hour
Observations 1,027,770 1,027,764 1,027,659 1,021,476 1,021,476 1,021,476
Zip Codes 720 720 720 635 635 635

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time) for all emergency calls. Traffic Di refers to the ith zip code-specific decile of
deviations from free-flow. The columns examine different levels of fixed effects and two way clustering of the standard
errors. Cluster-robust standard errors at the level described in the bottom panel are in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01

generate the traffic conditions.17 In all specifications, the results are robust to different ways

of calculating traffic congestion.

5.4 Policy investigation

In order to understand how municipalities are coping with the effect of traffic on first re-

sponders, we investigate how road congestion policies (HOV lanes, toll roads, and public

transportation) and fire department resources mitigate the negative impact of traffic on re-

sponse times. Local and state policies are implemented for many reasons, some of which may

be correlated with emergency response times. In this section, we investigate whether these

policies mitigate the marginal effect of traffic on response times. The transportation policies

we consider are not time varying and are nested within the zip codes. Therefore, our zip

code fixed effects absorb the base effect of the policy on response times, and our identifying

variation is based on the interaction of static policies with quasi-randomly assigned traf-

17If an alarm was raised at 11:50 the base specification (5 min with 5 min lag) uses traffic from 11:40-11:45. The
30 min with 5 min lag will use traffic from 11:15-11:45, and the 30 min with 10 min lag uses traffic from 11:10-11:40.
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Table 8: Robustness to different traffic variables
5min Lag 10min Lag

(1) (2) (3) (4) (5) (6) (7) (8)
5min 10min 20min 30min 60min 5min 30min 60min

Traffic D9 0.135∗∗∗ 0.132∗∗∗ 0.133∗∗∗ 0.122∗∗∗ 0.116∗∗∗ 0.140∗∗∗ 0.124∗∗∗ 0.126∗∗∗

(0.0231) (0.0244) (0.0249) (0.0232) (0.0241) (0.0249) (0.0234) (0.0242)
Traffic D10 0.191∗∗∗ 0.162∗∗∗ 0.161∗∗∗ 0.161∗∗∗ 0.150∗∗∗ 0.156∗∗∗ 0.157∗∗∗ 0.146∗∗∗

(0.0263) (0.0269) (0.0270) (0.0277) (0.0298) (0.0275) (0.0279) (0.0293)

Zip Code FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,027,770 1,027,769 1,027,769 1,027,769 1,027,769 1,025,217 1,025,217 1,025,217
Zip Codes 720 720 720 720 720 720 720 720

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time) for all emergency calls. Traffic Di refers to the ith decile of deviations from
free-flow. The columns examine different ways to create the traffic conditions prior to the alarm. Cluster-robust
standard errors at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

fic. This alleviates concern over any static unobservable correlation between transportation

policies and response times.

First, we analyze policies that attempt to reduce traffic congestion. We create indicator

variables for zip codes that have HOV lanes, toll roads, rail stations and metro stations.

Table 9 presents the results of these regressions that subset the sample by these variables

and then generates an interaction with being above the 9th decile (grouping the 9th and 10th

decile together). Column (1) presents the base effect for reference, and column (2) shows the

results for zip codes that do not have any of the aforementioned policies. Columns (3) - (6)

show the results for the subset of zip codes that have at least one HOV lane, toll lane, rail

station, and metro station.18 Lastly, column (7) shows the interactions. The marginal effect

of traffic is largest in the zip codes without any of these policies, and smallest in zip codes

with HOV lanes. In the interaction model the difference in marginal effect is statistically

significant for HOV lanes but none of the other policies. In addition to decreasing congestion

as found in the literature, HOV lanes appear to mitigate the marginal effect of congestion

on response times.19 One explanation is that emergency response vehicles can access the

18Metro stations are a subset of rail stations that focus on local transportation. By contrast, rail stations also
include longer distance (inter-city) rail lines.

19Rail, Metro stations, Toll and HOV lanes are implemented by cities for a multitude of reasons. It is possible that
these policies were put in place, partly, in response to the negative effect of traffic on response time. This could affect
the interpretation of the results of this section.
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less-congested HOV lanes during an emergency.

Table 9: Interactions with Tolling and Public Transport
(1) (2) (3) (4) (5) (6) (7)

Base None HOV Toll Rail Metro Interactions

Traffic D9 0.135∗∗∗ 0.169∗∗∗ 0.101∗∗∗ 0.207∗∗∗ 0.0881∗∗∗ 0.0666∗ 0.176∗∗∗

(0.0231) (0.0476) (0.0284) (0.0445) (0.0327) (0.0397) (0.0358)
Traffic D10 0.191∗∗∗ 0.270∗∗∗ 0.0905∗∗∗ 0.138∗∗∗ 0.191∗∗∗ 0.161∗∗∗ 0.232∗∗∗

(0.0263) (0.0511) (0.0308) (0.0395) (0.0485) (0.0527) (0.0373)
Traffic D9 or D10*HOV -0.0811∗∗

(0.0384)
Traffic D9 or D10*Toll 0.0406

(0.0454)
Traffic D9 or D10*Rail -0.0612

(0.0565)
Traffic D9 or D10*Metro 0.0303

(0.0642)

Zip Code FEs Yes Yes Yes Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes Yes Yes Yes
Observations 1,027,770 406,808 431,888 204,086 224,092 116,391 1,027,770
Zip Codes 720 278 319 182 154 80 720

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene
after they receive the alarm (Response Time) for all emergency calls. Traffic Di refers to the ith decile of deviations
from free-flow. Table 9 presents the results of these regressions that subset the sample by these variables and then
generates an interaction with being above the 9th decile (grouping the 9th and 10th decile together). Column (1)
presents the base effect for reference, and column (2) shows the results for zip codes that do not have any of the
aforementioned policies. Columns (3) - (6) show the results for the subset of zip codes that have at least one HOV
lane, toll lane, rail station, and metro station. Lastly, column (7) shows the interactions. Toll is equal to one if the
zip code has toll roads, Rail is equal to one if there are rail stations in the zip code, and Metro is equal to one if there
is a municipal metro station in the zip code. Cluster-robust standard errors at the zip code level are in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Municipalities may also provide additional resources to fire departments to reduce re-

sponse times. One potential policy to reduce response times is to build more fire stations.

The number of fires stations will reduce the expected distance between an incident and the

nearest fires station. Table 10 investigates the impact of traffic on response time based on the

number of fire stations per zip code. Our sample is limited to Los Angeles County due to the

availability of spatially explicit data on all fire stations. While we do not have the geographic

location of the specific station that was dispatched to a given incident, we attempt to proxy

for distance by using the number of stations within a zip code. The assumption is that an

incident in a zip code with more stations is more likely to have a nearby station relative to

incidents that occur in zip codes with fewer stations. The first column investigates the base

impact in Los Angeles County.20 Column (2) limits the sample to zip codes with fewer than

20Our definition of the Los Angeles CBSA includes locations outside of Los Angeles County (e.g. Anaheim) that
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2 fire stations (low stations), which is the median number of stations per zip code. Column

(3) limits the sample to zip codes with 2 or more fire stations (high stations). Column (4)

interacts the number of stations with our traffic deciles. Table 10 suggests that there are

limited impact of having more fire stations in the zip code. This suggest that the number of

fire stations in a given zip code is not a determining factor to mitigate the negative impact

of traffic on response times. One explanation is that fire stations in urban areas are well

distributed geographically, and the distance from a station to an incident is not the primary

predictor of response times.21

Table 10: Effect of traffic on response time based on the number of fire stations per zip code in Los
Angeles

(1) (2) (3) (4)
Base LA Low Stations High Stations Interactions

Traffic D9 0.0897∗∗ 0.122∗∗ 0.0697 0.0887∗∗

(0.0411) (0.0568) (0.0589) (0.0405)
Traffic D10 0.145∗∗∗ 0.190∗∗∗ 0.106∗ 0.144∗∗∗

(0.0454) (0.0703) (0.0591) (0.0445)
Traffic D9*Stations 0.00504

(0.0408)
Traffic D10*Stations -0.0429

(0.0431)

Zip Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 151,536 63,706 87,830 151,536
Zip Codes 165 83 82 165

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time) for all emergency calls. Traffic Di refers to the ith decile of deviations from
free-flow. The first column investigate the base impact in Los Angeles. Column (2) limits the sample to zip codes
with smaller than 2 fire stations. Column (3) limits the sample to zip codes with 2 or more fire stations. Column
(4) uses interaction terms. Cluster-robust standard errors at the zip code level are in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01

Another way of evaluating the interaction of traffic and fire department resources is

accounting for the intensity of emergency response calls at a given time. We assess the

effect of strained fire department resources by constructing two variables for the number of

incidents at a given time. The first counts the number of incidents in a zip code during a

are not served by the Los Angeles City or County fire departments. The goal of defining CBSAs is to examine regions
with different traffic patterns as opposed to fire departments.

21The spatial distribution of fire stations in Los Angeles County is presented visually in Figure A.3 in the Appendix.
Figure A.3 shows that fire stations are well-distributed geographically in the inhabited parts of the city.
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given hour and the second counts all incidents for a fire department in a given hour. The

first column in Table 11 reproduces our base results. Column (2) controls for the number

of incidents within a zip code and column (4) controls for the number of incidents at the

fire department level. Columns (2) and (4) show that controlling for the total number of

incidents does not significantly change the base effect of traffic on response time. Columns

(3) and (5) interact the incident counts with traffic deciles. Once again, the base effects

of traffic on response time remains qualitatively the same. In column (5), the interaction

between the 10th traffic decile and the number of emergency calls at the fire department is

positive and significant, indicating that the number of calls increases the marginal effect of

traffic. The incident count is positive and significant in all specifications, meaning that more

incidents lead to a longer response times as resources are strained.
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Table 11: The effect of traffic on response times while accounting for multiple incidents

Zip Fire Department

(1) (2) (3) (4) (5)
Base Count Traffic*Count Count Traffic*Count

Traffic D9 0.135∗∗∗ 0.129∗∗∗ 0.129∗∗∗ 0.130∗∗∗ 0.129∗∗∗

(0.0231) (0.0228) (0.0228) (0.0229) (0.0228)
Traffic D10 0.191∗∗∗ 0.181∗∗∗ 0.180∗∗∗ 0.182∗∗∗ 0.175∗∗∗

(0.0263) (0.0260) (0.0262) (0.0259) (0.0266)
Zip Count 0.188∗∗∗ 0.180∗∗∗

(0.0235) (0.0262)
FD Count 0.139∗∗∗ 0.131∗∗∗

(0.0337) (0.0349)
Traffic D9*Zip Count 0.0262

(0.0321)
Traffic D10*Zip Count 0.0430

(0.0335)
Traffic D9*FD Count -0.0135

(0.0218)
Traffic D10*FD Count 0.0561∗∗

(0.0256)

Zip Code FEs Yes Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes Yes
Observations 1,027,770 1,027,770 1,027,770 1,027,770 1,027,770
Zip Codes 720 720 720 720 720

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time) for all emergency calls. Traffic Di refers to the ith zip code-specific decile of
deviations from free-flow. The columns add the total number of incidents within either a zip code or a fire department
in a given hour on a given date. Cluster-robust standard errors clustered at the zip code level are in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5.5 Property damages and estimates for aggregate costs

In order to assess the economic impact of traffic congestion on increased response times, we

analyze the effect of traffic on property damages from fires. Table 12 presents the regression

results of traffic on damages where the dependent variable is the natural log of the dollar value

of property damages. These regressions only utilize fires as opposed to other emergencies.22

We examine the impact in both urban and non-urban areas. Column (1) presents our base

specification for the whole sample; traffic in the 10th decile increases fire damages by roughly

22These regressions drop all observations where the damage or the value of property is missing.
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9%, and traffic in the 9th decile has essentially zero effect. Columns (2) and (3) subset the

sample by non-urban and urban zip codes; there is no significant effect in urban zip code

and a 23% increase in damages for extreme traffic in non-urban zip codes. In the interaction

model (column (4)) the difference in damages between urban and non-urban areas is not

statistically significant. Non-urban areas may have larger damages from severe traffic for

two reasons. First, response times in these areas are longer on average and fires display an

exponential burn rate. Second, since our deciles are created from the whole sample, traffic

above the tenth decile occurs less frequently in non-urban zip codes. Therefore, these events

may be unexpected and fire departments may be less prepared to adapt to extreme traffic.

We also attempt to estimate the effect of response times on damages using traffic as

an instrument. This would provide an estimate of the value of time for fire departments

responding to a fire. A naive regression of damages on response times may confound the

fact that dispatchers may prioritize fires that are expected to be very costly. We present the

results in Table A.11 in the Appendix. The results are not precise but do suggest a large

effect of an additional minute on the scene. An additional minute increases damages by 15-

20%. One reason why the results are noisy is that we lose many observations when focusing

on fires that have valid damage data. The majority of incidents in our dataset are actually

emergency medical services.23 The results are consistent with literature documenting an

exponential burn rate where increases in response times can vastly increase fire damages (Lu

et al., 2014).

From the property damage estimates, we generate back of the envelope calculations for

the aggregate economic effect of traffic on emergency response services. First, we examine

the effect of traffic on the dollar value of damages from fires. This does not include any

injuries or deaths, nor does it include the effect of reduced response times on other types of

emergencies. Since damages are only affected by the 10th traffic decile we scale the effects

by average damages from fires and the annual number fires that occur in the 10th traffic

decile. This results in $3.3 million dollar in fire damages per year.24 There are several reasons

23We acknowledge that the sample used to estimate damage results is different than the primary estimation sample.
The response time is quite similar in our damage sample (6.4 compared to 6.2 for full sample), but the average delay
is somewhat lower (4.6 vs. 5.4 for full sample).

24This is calculated by multiplying the marginal effect of damages (10%) by the mean damage ($35,879) and scaling
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Table 12: The effect of traffic on property damages
(1) (2) (3) (4)
Full Non-Urban Urban Full

Traffic Decile 9 -0.00617 -0.0486 -0.000296 -0.0675
(0.0337) (0.0813) (0.0347) (0.0846)

Traffic Decile 10 0.0961∗∗ 0.258∗∗ 0.0718 0.204∗∗

(0.0472) (0.107) (0.0495) (0.101)
Traffic Decile 9*Urban 0.0782

(0.0942)
Traffic Decile 10*Urban -0.117

(0.109)

Zip Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 82,128 21,574 60,554 82,128
Zip Codes 654 126 528 654

Notes: The dependent variable is the natural log of the dollar value of damages from a fire. Traffic Di refers to the
ith decile of deviations from free-flow. The first column presents the full sample, column (2) focuses on non-urban
zip codes, column (3) restricts the sample to urban zip codes, and column (4) interacts traffic deciles with an urban
dummy. Cluster-robust standard errors at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

why this is likely a severe underestimate. First, we are only counting fires that have traffic

sensors in the zip code, which is roughly 47.5% of all fires in the NIFRS data. Second, the

NIFRS data only includes 75% of fire incidents. Extrapolating to all urban fires in California

increases the damages to $9 million per year. Lastly, we only include fires that have non-

missing damage estimates, which is only 35% of all fires. If we assume that damage data is

randomly missing and fires without damage data are the same as those with damage data

the annual costs of extreme traffic are $26 million. The annual damage from traffic on urban

fires ranges between $3-26 million in California, which is several orders of magnitude smaller

than estimates of alternative traffic externalities such as the value of time lost.

In order to assess the costs from non-fire emergencies, we also evaluate the impact of

increased response times due to traffic on EMS mortality rates. Wilde (2013) estimates that

a one minute increase in EMS response times leads to a 1% increase in 90-day mortality

rates. Our estimates show that traffic slows down emergency medical response response

by roughly 5 and 8 seconds in the 9th and 10th deciles, respectively.25 Combining the

by the number of fires in the 10th traffic decile per year (≈ 1000). The 10th traffic decile represents an increase of
0.17 minutes in emergency response time.

25This is based on the coefficent estimates for the 9th and 10th deciles in the EMS sample found in column (3) of
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1% marginal mortality effect with our estimates of traffic on response times implies that

traffic is responsible for an additional 9 deaths per year due to slower EMS services by fire

departments, assuming a base mortality rate of 6% found in Wilde (2013). Extrapolating to

EMS services provided by all fire departments in California generates 26 additional annual

deaths due to slower EMS response times. Using the U.S. Department of Transportation’s

Value of a Statistical Life of $9.6 million traffic increases social costs by roughly $258 million

due to increased mortality from EMS services.26 Combining both fire damages and mortality

damages from slower response times, we estimate that traffic leads to additional costs between

$95-$285 million due to the slowing down emergency response vehicles from fire departments.

These are clearly rough approximations that require significant extrapolation and should

primarily used to provide the general range of economic damages due to traffic slowing

down first responders. These damages do not account for costs associated with police or

paramedics when fire departments are not on the scene, although they are also likely to face

increased response times due to traffic congestion. Overall the additional fire damages from

traffic are quite small. However, the effect of traffic EMS services, including potential effects

on ambulances that we do not observe, are substantial but still significantly less than the

value of lost time and fuel costs.

6 Conclusion

This paper examines the relationship between traffic and emergency response times. We

match traffic data at a fine spatial and temporal scale to incident report data from fire

departments, using fire department data collected by the NFIRS and traffic data from the

California Department of Transportation for 2008 to 2015. Our results show that traffic

delays fire trucks responding to fires, providing emergency medical services, and responding

to other emergencies. Traffic also increases the average monetary damage from a fire. The

effect of traffic on response time is nonlinear, with most of the impact concentrated in the

9th and 10th deciles. We then investigate potential common congestion policies that might

Table 2.
26Documentation of revised value of statistical life estimates for the Department of Transportation are

provided at: https://www.transportation.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of%20a%

20Statistical%20Life%20Guidance.pdf. This is consistent with the upper range estimated by Kniesner et al. (2012).
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mitigate this problem. We find that HOV lanes partially mitigate the marginal effect of

traffic on response time. Fire department resources also appear to play a role in response

times as response times increase when fire departments need to respond to multiple incidents.

Our results document an additional externality of traffic congestion and highlight the com-

plementarity of two important public goods. In aggregate, the increased monetary damages

from fires and emergency medical services due to traffic is approximately$95-$285 million per

year in California. These costs do not account for increased response times for ambulances or

police, and therefore should be considered a lower bound for the costs of traffic on emergency

response services. The results document an additional benefit for reducing traffic. We do

not account for costs of adaptive investments that fire departments undertake to cope with

traffic congestion. New stations or trucks might need to be purchased in order to maintain

adequate response times, further increasing the costs of traffic congestion on first responders.

Lastly, the results highlight the importance of understanding linkages between public goods.

Understanding these linkages is important for properly allocating scarce public resources.
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Appendix

A Calculating deviation from free-flow

The primary traffic variable is a weighted average deviation from free-flow speeds for all monitoring
stations in a zip code. We call this variable “delay”, and there are several steps to construct it.
First, we construct a measure of free-flow speed for each zip code. Free-flow speed is simply the
average speed for each monitoring station in the middle of the night (00:00-01:59am).

FFmz =
1

N

∑
t∈{00:00-01:59}

speedmzt (A.1)

where speedmzt is the speed at monitoring station m in zip code z during 5-minute interval t.
Next, for every monitoring station we calculate the difference from the actual speed during a given
5-minute interval and the free-flow speed.

devmzt = speedmzt − FFmz (A.2)

This provides a deviation from free-flow for each monitoring station. Last, for every zip code in
each 5-minute interval we calculate a weighted average of all the monitoring stations’ deviations
from free-flow.

delayzt =
1

Nm

∑
m

devmzt ∗ weightmzt (A.3)

The weights are generated by the relative occupancy of a station across all times within the zip
code. Therefore, the expression for the weights is:

weightmzt =

∑
t∈{Montht} flowmzt∑

m

∑
t∈{Montht} flowmzt

(A.4)

We recalculate these weights every month to allow for changing utilization patterns over time, so
weightmzt is time varying over months but not within a given month. Occupancy is a measure of how
many cars pass through a road, and this measure places more weight on monitoring stations that are
more heavily utilized. It should be noted that traffic congestion decreases occupancy so if a station
is heavily congested all the time it will likely have less occupancy and receive a smaller weight. We
also calculate a simple average of deviations from free-flow without any weights. The correlation
between the weighted and unweighted measures of traffic congestion is 0.73. The correlation of
the deciles of traffic congestion constructed from the weighted and unweighted measures of traffic
congestion is 0.88. Our primary measure of traffic delay (delayzt) measures a weighted average of
deviations from free-flow for all monitoring stations in a given zip code during a given 5-minute
interval.

B Constructing traffic deciles

Our traffic congestion variable, delayzt, varies across zip codes and across 5-minute intervals. Ag-
gregating all zip codes and all time results in a panel of traffic congestion from 2008-2015 where
the cross sectional unit is the zip code and the time series unit is the 5-minute interval. This
dataset is over 573 million observations. From this dataset we construct several deciles. The first
is the aggregate deciles, which is simply the decile that any given observation of delayzt falls. We
also create aggregate deciles based on the unweighted version of delayzt. Next, we also create zip
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code-specific deciles. These deciles are constructed within each zip code based on the time series
variation within the zip code. Finally, we merge in the decile for a 5-minute interval immediately
prior to a fire alarm to assign the decile to an incident.

We calculate the deciles prior to the merge to capture the distribution of traffic in the population.
Calculating the deciles after the merge would capture the traffic distribution of the sample of fire
incidents, which may not be representative of the overall traffic distribution. This is shown in the
data in Table A.1 as the proportion of observations within each traffic decile is not equal to 0.1.
Rather more incidents occur in areas and during times where traffic is worse. This is not surprising
because traffic is worse in areas with more people and during times when people are awake and
active. The zip code and time fixed effects should control for most of these factors.

Table A.1: The proportion of fire calls within each traffic decile

Deciles Proportion

1 0.07
2 0.09
3 0.09
4 0.09
5 0.10
6 0.11
7 0.12
8 0.11
9 0.10
10 0.12

Absolute vs. zip code-specific deciles

There are valid rationales for using either absolute or zip code-specific (relative) deciles for esti-
mating the effect of traffic on response time. Using absolute deciles makes the variable consistent
across different zip codes. If the physical limits of traffic are the same across space this is the
correct specification. For example, we expect that when traffic reaches a 25 mph delay, that would
have a similar impact in different zip codes - conditional on the zip code fixed effect. If zip code
features, such as infrastructure, play an important role in response times than perhaps a relative
measure of congestion is more appropriate. We believe there are merits to both specifications and
the results are qualitatively similar regardless of the specification. It should also be noted that the
two measures are highly correlated (ρ = 0.89). The main difference is that high deciles are more
likely to occur in heavily congested areas using the absolute measure of deciles compared to the
relative measure.
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C Models for traffic expectations

We assume that fire departments form expectations about the traffic conditions for any given
incident based on their recent experience with traffic. We use fixed effects to account for the
baseline traffic knowledge for their location, hour-of-day, day-of-week, year-month. More precise
estimate are generated by recent traffic deviation using a moving average model - fire departments
expect fire today to be a function of fire in recent similar time periods. What constitutes a “similar
time period” is unknown so we develop several models. First, we assume that expectations are
formed by the most recent week of traffic at the same hour as shown below.

delayzt = β0 + γ
1

NW

d=−1∑
d=−7,h∈{H}

delayzt + βZ + βMY + βD + βH + ηzt (A.5)

The week-hour specification averages all observations of traffic delay that occurred in the same
hour, H, as a given incident over the past seven days. This specification assumes that recent traffic
patterns at a given time of day serves as the basis of fire departments’ expectations. From equation

A.5 we calculate both the predicted value of delay (d̂elayzt) the residual delay (η̂zt). We call d̂elayzt
expected traffic and η̂zt unexpected traffic and calculate deciles from both of these variables. The
top two deciles are then used as the covariates in the analysis of expected and unexpected traffic as
shown in Tables 5 and A.8.

We also generate a moving average model using traffic in the same hour over the past month as
shown below.

delayzt = β0 + γ
1

NW

d=−1∑
d=−30,h∈{H}

delayzt + βZ + βMY + βD + βH + ηzt (A.6)

We also relax the assumption that fire departments are making hour-by-hour predictions and
rather simplify to the morning peak, evening peak, or off-peak periods. This leads to the following
two specifications of the prediction equation.

delayzt = β0 + γ
1

NW

d=−1∑
d=−7,p∈{P}

delayzt + βZ + βMY + βD + βH + ηzt (A.7)

delayzt = β0 + γ
1

NW

d=−1∑
d=−30,p∈{P}

delayzt + βZ + βMY + βD + βH + ηzt (A.8)

where p ∈ {AM,PM,OFF} the moving average is restricted to all observations in the same
peak period, P , as the incident.
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D Additional tables and figures

Table A.2: Summary statistics for top and all deciles by city

City Decile Average Delay Std. Dev. Delay

All All 5.4 8.5
Los Angeles All 6.9 10.0
Bay Area All 5.9 8.9
San Diego All 5.1 8.1
Sacramento All 4.9 6.9
Other All 2.6 4.9
Los Angeles 9 9.2 1.7
Bay Area 9 9.1 1.7
San Diego 9 9.1 1.7
Sacramento 9 9.1 1.7
Other 9 8.9 1.6
Los Angeles 10 25.9 10.2
Bay Area 10 24.8 9.4
San Diego 10 26.3 10.8
Sacramento 10 22.2 8.4
Other 10 20.5 8.0

Notes: The table presents average and standard deviation of delay in miles per hour by city for all deciles, as well as the top
two deciles.

Table A.3: Summary statistics by decile

Decile Average Delay Std. Dev. Delay

1 -1.2 1.3
2 -0.1 0.9
3 0.5 0.9
4 1.2 1.1
5 2.0 1.6
6 3.1 2.4
7 4.4 3.7
8 6.2 5.1
9 9.4 7.4
10 20.1 12.3

Notes: The table presents average and standard deviation of delay in miles per hour for each decile. The first decile is
negative, indicating that there are faster average speeds than our definition of free-flow. Our definition of free-flow assumes
that there is no traffic from midnight to 2 AM, but speeds may be faster at other times.
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Table A.4: The effect of traffic on response time

(1) (2) (3) (4)
All Observations Fires EMS Emergency Calls

Traffic D9 0.101∗∗∗ 0.0862 0.0784∗∗∗ 0.0957∗∗∗

(0.0333) (0.0722) (0.0229) (0.0313)
Traffic D10 0.120∗∗∗ 0.0373 0.0927∗∗∗ 0.117∗∗∗

(0.0393) (0.0826) (0.0311) (0.0390)

FD Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 1,230,623 248,603 652,746 1,027,731
FD Codes 425 398 244 413

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after they
receive the alarm (Response Time). Traffic Di refers to the ith decile of deviations from free-flow. The columns denote subsets
of the data for incidents representing fires, all emergency medical services (EMS), and all emergency calls. Emergency calls
includes fires, EMS calls as well as incidents where the fire department is dispatched to address incidents involving over-
pressure rupture, explosion, overheating or hazardous conditions without fires. Fire department fixed effects are used in each
columns. Cluster-robust standard errors at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.5: Heterogeneity in traffic on response time by demographics
(1) (2) (3) (4) (5) (6)

Base High Income Low Income High Non-White Low Non-White Interaction

Traffic D9 0.135∗∗∗ 0.168∗∗∗ 0.102∗∗∗ 0.0830∗∗∗ 0.171∗∗∗ 0.155∗∗∗

(0.0231) (0.0340) (0.0314) (0.0269) (0.0386) (0.0514)
Traffic D10 0.191∗∗∗ 0.230∗∗∗ 0.150∗∗∗ 0.131∗∗∗ 0.234∗∗∗ 0.201∗∗∗

(0.0263) (0.0381) (0.0350) (0.0300) (0.0446) (0.0552)
Traffic D9*Hi Inc. 0.0197

(0.0477)
Traffic D10*Hi Inc. 0.00551

(0.0493)
Traffic D9*Hi Non-White -0.0521

(0.0500)
Traffic D10*Hi Non-White -0.0236

(0.0520)

Zip Code FEs Yes Yes Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes Yes Yes
Observations 1,027,770 512,608 515,162 519,962 507,808 1,027,770
Zip Codes 720 426 294 357 363 720

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after they
receive the alarm (Response Time) for all emergency calls. Traffic Di refers to the ith decile of deviations from free-flow. The
columns examine different subsets based on zip code level demographics. The High and Low Income/Non-White columns
restrict the sample to zip codes with above and below the sample medians. Column (6) interacts traffic delays with indicators
for above the sample median income and proportion non-white. Cluster-robust standard errors at the zip code level are in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.6: Robustness to different specifications - with fire department fixed effects
(1) (2) (3) (4) (5) (6)

Base Date Metro*Date Zip*All Zip*All Zip*All

Traffic D9 0.135∗∗∗ 0.0916∗∗∗ 0.0815∗∗∗ 0.111∗∗∗ 0.111∗∗∗ 0.111∗∗∗

(0.0231) (0.0210) (0.0203) (0.0195) (0.0252) (0.0188)
Traffic D10 0.191∗∗∗ 0.166∗∗∗ 0.154∗∗∗ 0.170∗∗∗ 0.170∗∗∗ 0.170∗∗∗

(0.0263) (0.0234) (0.0222) (0.0231) (0.0333) (0.0288)

Zip Code FEs Yes Yes Yes No No No
Fire Dept. FEs No Yes Yes Yes Yes Yes
Year*Month FEs Yes No No No No No
Day-of-week FEs Yes Yes Yes No No No
Hour-of-day FEs Yes Yes Yes No No No
Date FEs No Yes No No No No
Metro*Date FEs No No Yes No No No
Zip*Year*Month FEs No No No Yes Yes Yes
Zip*Day-of-week FEs No No No Yes Yes Yes
Zip*Hour-of-day No No No Yes Yes Yes
SE Cluster Zip Zip Zip Zip Zip & Month Zip & Hour
Observations 1,027,770 1,027,721 1,027,617 1,021,434 1,021,434 1,021,434
Zip Codes 720 719 719 635 635 635

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after they
receive the alarm (Response Time). Traffic Di refers to the ith decile of deviations from free-flow. The columns examine
different levels of fixed effects and two way clustering of the standard errors. Cluster-robust standard errors at the level
described in the bottom panel are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.7: The effect of traffic on response time - zip code-specific deciles
(1) (2) (3) (4)

All Observations Fires EMS Emergency Calls

Traffic D9 0.0850∗∗∗ 0.171∗∗∗ 0.0399∗∗∗ 0.0863∗∗∗

(0.0212) (0.0637) (0.0141) (0.0227)
Traffic D10 0.176∗∗∗ 0.219∗∗∗ 0.101∗∗∗ 0.176∗∗∗

(0.0249) (0.0774) (0.0155) (0.0267)

Zip Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 1,230,652 248,631 652,743 1,027,770
Zip Codes 721 709 602 720

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after they
receive the alarm (Response Time). Traffic Di refers to the ith zip code-specific decile of deviations from free-flow. The
columns denote subsets of the data for incidents representing fires, all emergency medical services (EMS), and all emergency
calls. Emergency calls includes fires, EMS calls as well as incidents where the fire department is dispatched to address incidents
involving over-pressure rupture, explosion, overheating or hazardous conditions without fires. Cluster-robust standard errors
at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.8: Heterogeneity in traffic on response time by traffic expectations - zip code-specific deciles
Hour Peak

(1) (2) (3) (4)
Week Month Week Month

Expected D9 -0.0165 -0.0387 -0.0221 -0.00205
(0.0257) (0.0237) (0.0270) (0.0261)

Expected D10 0.0439 0.0659 0.0453 0.0383
(0.0361) (0.0412) (0.0394) (0.0396)

Unexpected D9 0.0501∗∗∗ 0.0619∗∗∗ 0.0926∗∗∗ 0.0555∗∗∗

(0.0174) (0.0175) (0.0196) (0.0194)
Unexpected D10 0.171∗∗∗ 0.165∗∗∗ 0.166∗∗∗ 0.162∗∗∗

(0.0272) (0.0271) (0.0258) (0.0255)

First Stage .89 .96 .75 .58

Zip Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 1,027,770 1,027,770 1,027,770 1,027,770
Zip Codes 720 720 720 720

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after they
receive the alarm (Response Time) for all emergency calls. Residual and Prediction refer to the residuals and predicted values
from a moving average regression with all fixed effects and recent delays. The columns show different specifications for the
month average; either the previous week or month and using the same our or same peak period (AM, PM or Off-Peak). First
Stage shows the coefficient on the moving average variable in the first stage regression - a perfect prediction will have a value
of one. Both the residuals and predicted values are standardized. Cluster-robust standard errors at the zip code level are in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.9: Robustness to different specifications - without weighting for occupancy
(1) (2) (3) (4) (5) (6)

Base Date Metro*Date Zip*All Zip*All Zip*All

Traffic D9 0.0754∗∗∗ 0.0585∗∗∗ 0.0439∗∗ 0.0825∗∗∗ 0.0825∗∗∗ 0.0825∗∗∗

(0.0228) (0.0223) (0.0212) (0.0174) (0.0193) (0.0188)
Traffic D10 0.172∗∗∗ 0.147∗∗∗ 0.126∗∗∗ 0.147∗∗∗ 0.147∗∗∗ 0.147∗∗∗

(0.0280) (0.0275) (0.0266) (0.0269) (0.0320) (0.0277)

Zip Code FEs Yes Yes Yes No No No
Year*Month FEs Yes No No No No No
Day-of-week FEs Yes Yes Yes No No No
Hour-of-day FEs Yes Yes Yes No No No
Date FEs No Yes No No No No
Metro*Date FEs No No Yes No No No
Zip*Year*Month FEs No No No Yes Yes Yes
Zip*Day-of-week FEs No No No Yes Yes Yes
Zip*Hour-of-day No No No Yes Yes Yes
SE Cluster Zip Zip Zip Zip Zip & Month Zip & Hour
Observations 1,027,770 1,027,764 1,027,659 1,021,476 1,021,476 1,021,476
Zip Codes 720 720 720 635 635 635

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after they
receive the alarm (Response Time). Traffic Di refers to the ith decile of deviations from free-flow. The columns examine
different levels of fixed effects and two way clustering of the standard errors. Cluster-robust standard errors clustered at the
level described in the bottom panel are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.10: Robustness to different specifications - average traffic

(1) (2) (3) (4) (5) (6)
Base Date Metro*Date Zip*All Zip*All Zip*All

Lag Delay 0.0639∗∗∗ 0.0537∗∗∗ 0.0475∗∗∗ 0.0562∗∗∗ 0.0562∗∗∗ 0.0562∗∗∗

(0.00937) (0.00903) (0.00871) (0.00887) (0.0117) (0.00985)

Zip Code FEs Yes Yes Yes No No No
Year*Month FEs Yes No No No No No
Day-of-week FEs Yes Yes Yes No No No
Hour-of-day FEs Yes Yes Yes No No No
Date FEs No Yes No No No No
Metro*Date FEs No No Yes No No No
Zip*Year*Month FEs No No No Yes Yes Yes
Zip*Day-of-week FEs No No No Yes Yes Yes
Zip*Hour-of-day No No No Yes Yes Yes
SE Cluster Zip Zip Zip Zip Zip & Month Zip & Hour
Observations 1,027,770 1,027,764 1,027,659 1,021,476 1,021,476 1,021,476
Zip Codes 720 720 720 635 635 635

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after they
receive the alarm (Response Time). Lag Delay is the standardized (µ = 0 and σ = 1) deviation from free-flow in miles per
hour. The columns examine different levels of fixed effects and two way clustering of the standard errors. Cluster-robust
standard errors clustered at the level described in the bottom panel are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.11: The effect of response time on damages
(1) (2) (3) (4)
Full Non-Urban Urban Full

Response Time 0.160 0.233 0.204 0.191
(0.163) (0.157) (0.192) (0.242)

Response Time*Urban -0.0872
(0.524)

F-stat 1.73 0.75 1.51 0.48
Zip Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 82,128 21,574 60,554 82,128
Zip Codes 654 126 528 654

Notes: The dependent variable is the natural log of the dollar value of damages from a fire. Response time is instrumented
with the top three deciles of deviations from free-flow. Column (1) presents the base specification, column (2) drops response
times over the 99th percentile, column (3) drops losses greater than $1 million, and column (4) drops both sets of outliers.
Cluster-robust standard errors clustered at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure A.1: Effect of Deciles of Traffic on Response Time by Traffic Conditions

Notes: The figure plots the coefficient for indicators variables for deciles of traffic congestion from regres-
sions where the dependent variable is response time (in minutes). The results are from two regressions,
the High Traffic and Low Traffic regressions limit the sample to zip codes with average delays above and
below the median average delay. The first decile is omitted to prevent perfect multicollinearity. The re-
gressions includes zip code, year-by-month, day-of-week, and hour-of-day fixed effects. The 95% error bars
are generated from cluster-robust standard errors at the zip code level.
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Figure A.2: The effect of deciles of traffic on response time by zip code-specific and aggregate deciles

Notes: The figure plots the coefficient for indicators variables for deciles of traffic congestion from regres-
sions where the dependent variable is response time (in minutes). The results are from two regressions.
It shows coefficients for deciles created using all zip codes (called Aggregate) and zip code-specific deciles
(called Zip-Specific). The regressions includes zip code, year-by-month, day-of-week, and hour-of-day fixed
effects. The 95% error bars are generated from cluster-robust standard errors at the zip code level.
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Figure A.3: Spatial distribution of fire stations in Los Angeles County

Notes: The map shows the location of fire stations in LA County. The different colors represent different
fire departments. The dark outlines designate zip code boundaries.
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